
ALLEGRO CL for Windows

G
lossary

Allegro CL 3.0 for Windows
printed documentation in PDF
format

All the printed documentation for Allegro CL 3.0 for Windows is available in thispdf file
and is readable with an Adobe Acrobat Reader. Please Note:

• There are links in each Table of Contents page. Clicking on a chapter or section
(but not heading) title causes a jump to the associated page.

• There are no links in any index in this edition.

• Many pictures do not appear. An apparent incompatibility in the picture
format results in their not appearing in the PDF file (you see blank space instead)

• If you choose ‘Bookmarks and Page’ from the View menu, you will see
bookmarks for each chapter of each manual. Clicking on a bookmark will cause
the associated page to be displayed (usually, the first page of the chapter).

• The pagination (<chapter>-<number>) used in the printed documents does not
correspond to the pagination used in thepdf file (where all pages are numbered
in order from the beginning). To find a page listed PT-2-2, go to the beginning of
Chapter 2 in theProgramming Tools manual (using the Acrobat Bookmarks). Go
to page 2 of that chapter.

Copyright and Conditions of Use
Copyright 1996, Franz Inc. All Rights Reserved.

The PDF hypertext markup that implements the hypertext features of the Allegro CL 3.0.1
for Windows User Guide pages collectively theUser Guide, is the property of Franz Inc.

Distribution of the User Guide as a hypertext PDF document on the Internet does not
constitute consent to any use of the underlying hypertext PDF markup for redistribution of
any kind, commercial or otherwise, either via the Internet or using some other form of dis-
tribution, in hypertext or otherwise.

Permission to copy, distribute, display, and transmit the User Guide is granted provided
that copies are not made or distributed or displayed or transmitted for direct commercial

ALLEGRO CL for Windows

advantage, that notice is given that copying, distribution, display, and/or transmission is by
permission of Franz Inc., and that any copy made is COMPLETE and UNMODIFIED,
including this copyright notice and its date.

Permissions related to performance and to creation of derivative works are expressly
NOT granted.

Permission to make partial copies is expressly NOT granted, EXCEPT that limited per-
mission is granted to transmit and display a partial copy of the User Guide for the ordinary
purpose of direct viewing by a human being in the usual manner that PDF browsers permit
the viewing of such a complete document, provided that no recopying, redistribution, redis-
play, or retransmission is made of any such partial copy.

Permission to make modified copies is expressly NOT granted.

Permission to add or replace any links or any graphical images to any of these pages is
expressly NOT granted.

Permission to use any of the included graphical (GIF) images in any document other
than the User Guide is expressly NOT granted.

Restricted Rights Legend

Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in (i) FAR 52.227-14 Alt III, (ii) FAR 52.227-19, (iii) DFARS
252.7013(c)(1)(ii), or (iv) the accompanying license Agreement, as applicable. For
purposes of the FAR, the Software shall be deemed to be ``unpublished'' and
licensed with disclosure prohibitions, rights reserved under the copyright laws of
the United States. Franz Inc., 1995 University Ave., Berkeley, CA 94704.'

Warranty disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. IN NO
EVENT WILL FRANZ INC. BE LIABLE FOR DIRECT, INDIRECT, SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY INACCURACY OR ERROR IN THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ALLEGRO CL for Windows

G
lossary

PREFACE

There are two volumes of bound documentation for Allegro CL for Windows. This is vol-
ume 1. Each volume contains several manuals. There is also aRead This First document,
which not bound in with the rest of the documentation.

Here is a brief description of the documentation:

1. Read This First. This document is supplied loose. It contains information that
was not put in the bound documentation.

Volume 1
2. Getting Started. This document describes how to install Allegro CL for

Windows on your system and it gives information about running the product.

3. Common Lisp Introduction. This document is an introduction to the Common
Lisp language and the Allegro CL for Windows implementation of it.

4. Interface Builder. The Interface Builder allows you to build an interface to
your application interactively. It is described in this manual.

5. Foreign Function Interface. Allegro CL for Windows supports calling
applications written in languages other than Lisp. This document describes
the interface.

Volume 2
6. Programming Tools. This document describes the user interface to Allegro

CL for Windows. In particular, it describes the Toploop window, the editor,
the debugging facilities, etc.

7. General Index. An index to all documents in Volumes 1 and 2.

Professional version only
The Professional version of Allegro CL provides the facility to create standalone applica-
tions. User who purchase the Professional version also receive the following document:

Professionalsupplement. This document describes features available in the Pro-
fessional version (but not in the standard version), including how to create stan-
dalone applications.

ALLEGRO CL for Windows

Each individual manual has a table of contents at the beginning and an index at the end.
TheGeneral Index manual, in volume 3, is an index for all manuals in Volumes 1 and 2.

Debugge

Allegro CL for
Windows

Getting
Started

version 3.0

October, 1995

Copyright and other notices:

This is revision 0 of this manual. This manual has Franz Inc. document number D-U-00-
PC0-03-51017-3-0.

Copyright 1992-1995 by Franz Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means
electronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademarks of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, Windows 95, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Getting Started c - 1

Debugge

Contents

1 Introduction 1

2 Installation 2
Installing Win32s (Windows 3.1 or Windows for Workgroups users only) 2
Allegro CL 3.0 for Windows installation 3
Reinstallation 4
Uninstall Program 5
Filename length restriction (Windows 3.1 only) 5
Professional and standard versions 5

3 Documentation 6
Volume 1 6
Volume 2 6
Professional supplement (Professional version only) 7
The Online Manual 7
Other documents for starting out 8
Pictures in the documentation 8
Change bars 9

4 When Allegro CL starts up 10

5 Features of Microsoft Windows 12
A window 12
Menus 13
Keyboard equivalents to menu items 13
Interrupting 14
What to do if the system hangs 14
The two Enter keys 15
Dialog boxes 15

c - 2 ALLEGRO CL for Windows: Getting Started

6 Getting information and patches 16
The World Wide Web page 16
What is a patch 16
Getting patches 16
Where to put patch files 17
When patches are loaded 17
Creating an image with patches loaded 17
How do you know what patches are loaded in an image 18
What if a patch needs to be updated? 18

7 Example files 20
Where examples are located 20

8 Anomalies and things to note 23
Professional and standard versions are incompatible! 25
Version 2.0 fsl and img files cannot be used by version 3.0 25
Do not use 2.0 patches including FAQ patches 25

9 Support 26

Index 27

ALLEGRO CL for Windows: Getting Started 1

Debugge

1 Introduction

Welcome to Allegro CL for Windows. This is the introductory document which will get you
started with the system and direct you to the other documents and help facilities which
describe how to use it. This manual is divided into the following sections:

1. Introduction . The section you are now reading.

2. Installation . This section describes how to install Allegro CL for Windows.

3. Documentation. This sections describes the documentation for Allegro CL for
Windows. This section contains a description of the notation used in Allegro CL
for Windows documentation.

4. When Allegro CL starts up. This section briefly describes the features on the
screen and refers you to more complete documentation.

5. Features of the Microsoft Windows. Allegro CL for Windows is designed to
run under various versions of the Microsoft Windows. In this section we discuss
which versions and we mention certain features of MS Windows that help you
when running Allegro CL for Windows.

6. Sources of information and patches. Franz Inc. maintains a World Wide Web
page from which a product FAQ, patches, and other useful things can obtained.
Its URL and other sources of information are described in this section.

7. Example files. A number of example files are included with the Allegro CL for
Windows distribution. These are described in this section.

8. Anomalies and things to note. This section describes behavior of Allegro CL
for Windows which may be unexpected or unusual.

9. Support. This section briefly introduces product support. See theRead This First
document for more information on product support.

You should have received aRead This First document with the Allegro CL for Windows
distribution. Please be sure to scan this document before installing or using Allegro CL for
Windows. It may contain important information which could not be included in the bound
documents.

2 ALLEGRO CL for Windows: Getting Started

2 Installation

Allegro CL 3.0 for Windows will run under Windows 95, Windows NT 3.51, or Win-
dows 3.1 or Windows for Workgroups with the Win32s upgrade supplied with the dis-
tribution.

The software is distributed on a CD. The CD contains both Allegro CL for Windows and
Win32s.

Installing Win32s (Windows 3.1 or Windows for Workgroups
users only)
If you are running Windows 95 or Windows NT, you do not need to install Win32s. If you
are running Windows 3.1, you must install Win32s before installing Allegro CL for Win-
dows. You may have a version of Win32s already installed on your machine. If it is earlier
than the version supplied with the distribution, we strongly recommend upgrading because
it includes many additional features (over earlier versions) which are used by Allegro CL
for Windows. To install Win32s, do the following:

1. Switch to the Program Manager, making it the active program.

2. Put the CD in your CD Drive. We assume the CD drive is device D in this
document. Replace D with the correct letter if necessary.

3. ChooseRun from the Program Manager File Menu.

4. In the dialog that appears, enterd:\win32s\setup.exe

5. Answer dialog questions when necessary.

The Win32s installation includes the optional installation of FreeCell, a solitaire game
that requires Win32s in order to run, and can thus be used as a check to ensure Win32s is
installed properly.

If the system detects that the same or a later version of Win32s is installed, it will inform
you and you should abort the installation of Win32s.

The Read This First document gives the exact version number of Win32s distributed
with Allegro CL.

ALLEGRO CL for Windows: Getting Started 3

Debugge

Allegro CL 3.0 for Windows installation
There are two versions of Allegro CL for Windows: the Professional version and the stan-
dard version. The box should say which version you have received. Both are installed the
same way (the differences between the two versions is described at the end of this section).
To install, do the following:

1. Choose a directory on a filesystem that has 15 Megabytes free. The directory
should be empty. We assume you choosec:\allegro . Note that the directory
name must follow the 8.3 name limitation (no more than 8 letters for the name,
no more than 3 for the extension) even if you are running Windows 95 or
Windows NT. (Users of those products will not again run into this limitation.)

2. Insert the distribution CD into the CD drive. We assume the CD drive is device
D. Replace D with the correct letter if necessary.

3. Run the program d:\allegro\setup.exe . If you are running Windows
95, chooseRun from the menu displayed by clicking on Start and enter
d:\allegro\setup.exe in the dialog that appears. If you are using
Windows 3.1, chooseRun from the Program Manager File menu and enter
d:\allegro\setup.exe in the dialog that appears.

4. Note the serial number on the CD jewel case (box). You are asked for this serial
number, your name, and your organization soon after the installation process
begins. Enter the serial number exactly as it appears on the jewel case.

5. Enter the directory for installation or accept the defaultc:\allegro . When
you are asked where to install Allegro CL, you are offered the default location
c:\allegro . Either click on OK to accept this location or enter a different
location. The location must follow the 8.3 filename limitation even if that
limitation does not otherwise apply to your machine. Whatever directory you
choose must have 15 Megabytes of free space.

Note: this is the same default as that specified for Allegro CL for Windows
2.0. If you have Allegro CL for Windows 2.0 already installed and wish both ver-
sions to be available, choose a directory other than the directory where Allegro
CL 2.0 for Windows is installed.

Once the directory is specified, the installation runs to completion, after which a new
Program folder (on Windows 95) or a new Program Group (for Windows 3.1) has been cre-
ated. The folder or group is calledAllegro CL 3.0 for Windows.

4 ALLEGRO CL for Windows: Getting Started

Three program items are installed by the Professional version (Allegro CL 3.0, Allegro
CL Runtime, and Uninstall), two by the standard version (Allegro CL and Uninstall). We
show the folders for the Professional and standard versions next. If you are running Win-
dows 3.1, you will see a Program Group (icons in a box titled Allegro CL 3.0). The icons
are similar to those in the Windows 95 folders. (Many Windows 95 users may close the pro-
gram folder window and start Allegro CL from the Programs choice of the Start menu. It
is not necessary to have the folder displayed.)

Here is the program folder for the Professional version:

And here is the program folder for the standard version:

You can now run Allegro CL for Windows. In Windows 95, either click on the Start but-
ton, selecting Programs, selecting Allegro CL 3.0 for Windows, and selecting Allegro CL
or start the program from the program folder. In Windows 3.1, start Allegro CL by double-
clicking on the Allegro CL icon in the Allegro CL 3.0 for Windows program group.

Reinstallation
You can re-install Allegro CL for Windows by following the same instructions. (It is not
necessary to reinstall Win32s before reinstalling Allegro CL.) All files in the distribution
will be overwritten by files on the disks with the same names. You may want to clear the
directories where Allegro CL for Windows is stored (by using the Uninstall program, for
example) but this is not necessary.

ALLEGRO CL for Windows: Getting Started 5

Debugge

Uninstall Program
Following the Windows paradigm, an Uninstall program is included with Allegro CL 3.0
for Windows. If invoked, it will ask at least twice if you are sure about uninstalling. If you
confirm that you are, all installed programs will be removed. The directories created as part
of the installation will also be removed if they are empty (that is if the only files in them are
associated with the distribution).

Filename length restriction (Windows 3.1 only)
Windows 3.1 has a 64 character limit on the length of pathnames of files. The longest path
in the Allegro CL for Windows distribution is 33 characters long; for example:

c:\allegro\ext\comtab\emacsctb.lsp

uses 33 characters includingc:\allegro\. If you choose a directory name significantly longer
thatc:\allegro, so that the limit is exceeded for some files, those files will not be installed.

Professional and standard versions
There are two versions of Allegro CL for Windows: Professional and standard. The ver-
sions are incompatible: compiled Lisp (fsl) and image (img) files generated by one cannot
be used by the other.

The Professional version contains everything the standard versions does plus:

• Support for interprocess communication (fsl\socket.fsl, sockaux.dll).

• Certain Common Control widgets (fsl\grid*.fsl).

• The runtime generator.

• Access to certain source code (for Common graphics, the Interface Builder, and
the Grapher). Getting source code requires an additional license (but no
additional charge for Professional version customers). You will find a Source
Code License among the distribution material. Fill it out and return it along with
the Registration Card and the sources will be sent to you on a diskette.

The extra products available to Professional version customers can be purchased indi-
vidually by standard version customers. Please contact Franz Inc. for more information.

6 ALLEGRO CL for Windows: Getting Started

3 Documentation

Nine documents comprise the documentation set for Allegro CL for Windows. Several of
these documents are bound together. They are:

1. Read This First. This document is supplied separate from the bound manuals. It
contains information that was (because of printing schedules) not put in the
bound documentation.

Volume 1
2. Getting Started. This is the document you are reading now. It describes how to

install Allegro CL for Windows on your system and it gives information about
running the product.

3. Common Lisp Introduction. This document is an introduction to the Common
Lisp language.

4. Interface Builder. The Interface Builder can be used to build an interface to your
application.

5. Foreign Function Interface. Allegro CL for Windows supports calling
applications written in languages other than Lisp. This document describes the
interface.

Volume 2
6. Programming Tools. This document describes the programmer interface and the

functions and variables associated with the programming interface (the editor,
debugger, inspector, etc.)

7. General Index. This document contains an index to the five printed and bound
manuals listed above.

ALLEGRO CL for Windows: Getting Started 7

Debugge

Professional supplement (Professional version only)
If you purchased the Professional version of Allegro CL for Windows, you will also have
the following manual:

Professionalsupplement. The manual describes features available in the Profes-
sional but not in the standard version of Allegro CL for Windows 3.0. Among
these are the Runtime Generator, which allows you to create customized applica-
tions that run independently of Allegro CL for Windows; the Winsock interface;
and Grid widgets.

The Online Manual
Descriptions of Common Lisp (including CLOS), Common Graphics, and many Allegro
CL extensions can be found in the Online Manual. The Online Manual follows the usual
WinHelp format. Bring up the manual by choosingManual Contents from the Help menu.

The Online Manual is arranged into chapters, with the functionality associated with
each chapter described within it. ChoosingManual Contents brings up the contents of the
Online Manual, and you can use standard WinHelp tools to navigate about the document at
that point. On the Contents page, you will find links to Common Lisp Contents, Common
Graphics Contents, CLOS Contents, the Release Notes, a description of the Online Manual,
and some other immediately useful entries.

You can produce a WinHelp word list for the Online Manual by clicking onSearch,
clicking on theFind tab in the dialog that appears, clicking on theNext button, and clicking
on theFinish button. This takes a while the first time you do it (since an index file must be

8 ALLEGRO CL for Windows: Getting Started

created and stored) but it is worth doing because the additional search capability greatly
enhances the usefulness of the Online Manual.

TheManual Entry choice allows you to go directly to a single entry. It brings up the
documentation for the symbol nearest the text cursor. If there is no such symbol, or if the
nearest symbol is not documented in the Online Manual, a message to that effect is printed
in the status bar and the Online Manual does not come up.

Note that certain things, like format directives, are not named by symbols, so there is no
way to go directly to their descriptions usingManual Entry . But because they are after the
entry forformat , you can go to that entry and then page down or search to find the specific
description of interest, or you can the new WinHelp search facilities.

Besides the entries on the main contents, an entry which is likely to be of particular
interest to many users isProgramming environment. This entry (it is the last item in the
Lisp Contents entry) provides information on garbage collection, and other details of the
implementation.

The Online Manual is sometimes referred to as Online Help.

Other documents for starting out
All users should look at theProgramming Toolsmanual since this document describes how
to use Allegro CL for Windows. Users new to Lisp may wish to look at theCommon Lisp
Introduction. Experienced Lisp users need not consult that document.

The Interface Builder is a very useful tool for constructing Graphical User Interfaces to
Allegro CL for Windows applications. TheInterface Builder manual tells how to use it.

Pictures in the documentation
There are many pictures derived from screen shots in the documentation. In some cases, we
have converted the color and grayscale images to black and white. On your machine, the
corresponding images will be in color or grayscale. For the same reason, those images do
not use 3D effects.

Most of the images were created on a Windows 95 machine. Users of Windows 3.1 will
often see dialogs and other features quite different from what is illustrated. (Some images
were created on a Windows 3.1 machine, so Windows 95 users will see something differ-
ent.)

Note too that the contents of windows, menus, and dialogs often reflect details of your
environment that are likely different from the environment on the machine where the pic-

ALLEGRO CL for Windows: Getting Started 9

Debugge

tures were made. Do not expect to see exactly what is illustrated. Instead, the pictures serve
as a guide to what you will see.

Change bars
Change bars (a black line to the left of the text -- this paragraph has a change bar) are some-
times used to indicate new features or significantly changed functionality. The change is
with respect to the 2.0 version of the manual. Where the functionality is the same, change
bars are not typically used even if the text is rewritten.

10 ALLEGRO CL for Windows: Getting Started

4 When Allegro CL starts up

When you start Allegro CL for Windows, the screen will look something like this:

We have identified certain of the features:

• The Menu Bar. The standard Allegro CL menus are displayed. The contents of
the menus are often self-explanatory. See section 2.5The menubar in
Programming Tools for more information.

• The Toolbar. Each button on the toolbar, when clicked on, either changes the
state of Lisp or initiates some action. When the cursor is over a toolbar button, a
description of what clicking on the button does is printed in the status bar. The
toolbar can be hidden (and redisplayed) with the F12 key. See section 2.6The
toolbar in Programming Tools for more information.

Menu Bar Tool Bar

 Initial Toploop Window Status Bar

ALLEGRO CL for Windows: Getting Started 11

Debugge

• The Toploop Window. Interaction with Lisp can go on through the Toploop
window. See chapter 2 inProgramming Tools for more information.

• The Status Bar. Information of interest is printed in the status bar by the system.
What is printed often depends on the location of the mouse, or on what you are
typing. (Thus, when the mouse is over a button in the toolbar, the status bar
displays what clicking on the button will do; and when you are entering a form
in a Text Edit window -- like the Toploop Window -- the argument list of the
operator in the form is displayed in the status bar.) The status bar can be hidden
(and redisplayed) with the F11 key. Note that the status bar is always above any
subwindow of*lisp-main-window* . Some windows are large enough that
the status bar covers part of them. That is when the F11 key is particularly useful.
See section 2.7The status bar in Programming Tools for more information.

12 ALLEGRO CL for Windows: Getting Started

5 Features of Microsoft Windows

You may already be familiar with the information in this section, particularly if you have
used MicroSoft Windows for some time. Newcomers to Microsoft Windows may wish to
review this section for shortcuts and hints when running Allegro CL for Windows. The
illustrations and features are from a Windows 95 machine.

A window
Illustrated below is the Toploop window (which appears when you start Allegro CL for
Windows) with some of its features identified:

These are all standard Windows features so we will not discuss them at length. When
you press the left mouse button in the Program icon, a menu is displayed allowing you to
minimize or close the window (along with other options). Clicking on the Close box or
choosingClose from the Program icon menu is the same asClose in the File menu.

You can expand the window to cover the screen by clicking the Maximize button and
make it smaller or into an icon by clicking the Minimize button.

Click above or below the bubble in the scroll bars to scroll the window in the desired
direction. Windows can have horizontal as well as vertical scroll bars.

Program icon Window title Title bar
Minimize button
Maximize button
Close button
(left to right)

Vertical
scroll bar

ALLEGRO CL for Windows: Getting Started 13

Debugge

Menus
A good deal of input is done with menus. Whenever a program is running, the menu bar
along the top of the screen contains menus appropriate for the program. These menus often
have the same names but different items depending on what program is being run. In our
documentation, we name menus with a capitalized word in no special font, usually fol-
lowed by ‘menu’ -- thus the File menu and the Tools menu. Items (also called choices) in
a menu are named with their title inTimes Bold, thus theExit item in the File menu.

Keyboard equivalents to menu items
The following illustration shows the File menu from the Allegro CL menu bar:

Note that each menu and most of the menu items have an underlined letter. This letter
indicates how to display and choose from the menu without using the mouse. Hold the Alt
key down and press the underlined letter in the menu title (‘F’ in the case of the File menu).
Keep the Alt key pressed. Press the letter underlined in the selection you want (‘S’ forSave
and ‘A’ for Save As, for example). The result is the same as selecting the choice from the
menu with the mouse.

Note that some choices have a key combination to the right of the choice. Pressing this
key combination at any time is equivalent to selecting the menu item with the mouse. For
example, the key combination Control-S (Crtl+S in the menu) is equivalent to selecting
Save.

14 ALLEGRO CL for Windows: Getting Started

Note that not all items have keyboard equivalents using the Control key. A few menus
and menu items do not have underlined letters indicating an Alt key shortcut (although all
the ones illustrated do).

Interrupting
If Lisp seems not to respond, you can interrupt it by pressing the Break key (sometimes
labeled Break and Pause). Keep the key pressed for several seconds. It may take Lisp sev-
eral additional seconds to respond. When it does, it will display a Restarts dialog box sim-
ilar to the following:

You typically chooseAbort although you might chooseEnter Debugger to see if you
can determine why Lisp seemed to be hung (e.g. if it was in an infinite loop that does not
process Windows events1). In any case, you once again have control. (There is also an
Invoke Selected Restart button, but there are typically only two restarts that correspond to
the other two buttons when computation is interrupted.)

What to do if the system hangs
Pressing Break as described just above is the best solution. If that does not work, you can
press the combination Ctrl-Alt-Delete which may kill the Lisp process. That is pretty dras-
tic since your work will be lost so only use it as a last resort when pressing Break has clearly
failed. (If you are running Windows NT or Windows 95, Ctrl-Alt-Del has a less drastic
effect, but you may still not be able to regain control without killing the task.)

1. See the description ofcg:process-pending-events in the Online Help. You
should put calls to this function in cpu-intensive loops to ensure you can break out of them
if necessary.

ALLEGRO CL for Windows: Getting Started 15

Debugge

The two Enter keys
On most PC keyboards, there are two keys named ‘Enter’. One, next to the alphabetical
keys, is typically named ‘Enter↵’ while the other, usually next to the numeric keypad, is
simply named ‘Enter’. These two keys have different codes. In most circumstances, they
can be used interchangeably but in some cases they cannot, including the following:

• In a Text Edit window, Enter↵ is a carriage return while Enter calls for the
current Lisp expression to be evaluated. This distinction is particularly important
when text is selected (i.e. highlighted). Hitting Enter↵ replaces the highlighted
text with a carriage return while Enter causes the text to be evaluated in the
Toploop window.

Dialog boxes
Lisp (like many Windows applications) does some communication via dialog boxes. A
Restarts dialog box is displayed when an error occurs, for example -- see the illustration
underInterrupting above. Note that when a dialog box appears, it often controls the screen
and you must choose one of its boxes (Invoke Selected Restart, Abort andEnter Debug-
ger in the illustration above) before continuing with Lisp.

16 ALLEGRO CL for Windows: Getting Started

6 Getting information and patches

The World Wide Web page
Franz Inc. maintains a World Wide Web page. Its URL is

http://www.franz.com

The page contains information about Allegro CL for Windows and other Franz Inc. prod-
ucts. Of particular interest to users of Allegro CL for Windows is the ability to access the
Allegro CL for Windows FAQ and patches.

The FAQ (Frequently Asked Questions) is a document written in question and answer
format. It is updated regularly, often with answers to questions that the Franz Inc. support
staff notices are common. Hints and tips (about optimizing code, for example) are also pro-
vided. We recommend that users visit the WWW page from time to time and examine or
download the current version of the FAQ.

What is a patch
A patch is a file (typically a.fsl file) that, when loaded into Allegro CL, fixes some problem
or bug, or (more rarely) adds some feature. Patches are typically produced in response to a
report of a bug (that is not trivial and does not have a simple workaround). Note that some
features cannot be patched.

Getting patches
Patches are available via the Franz Inc. World Wide Web page. Access the page (whose
URL address is given above) and follow directions to Allegro CL 3.0 for Windows patches.
You can download patches from the WWW page.

ALLEGRO CL for Windows: Getting Started 17

Debugge

Where to put patch files
Patch files should be in theUPDATE\ subdirectory of the Allegro CL distribution directory
(the directory you specified when you installed Allegro CL for Windows). When you install
Allegro CL for Windows, an emptyUPDATE\ subdirectory is created. Thus, if you
installed Allegro CL in the default location, which isC:\ALLEGRO, the update directory is
C:\ALLEGRO\UPDATE.

All patches should be placed in this directory. When Allegro CL starts up, the patches
in this directory are read into the image.

When patches are loaded
Patches are loaded when Allegro CL starts up. At that time, all patch files found in the
UPDATE\ subdirectory are read into the Lisp image. At the same time a record of what
patches are loaded is printed in the banner in the toploop window. Note that saved images
do not typically load patches (see the Online Manual entry onsave-image for more
information).

Creating an image with patches loaded
You may find it desirable to create an image (withsave-image) that has all the patches
loaded. When saving images, though, keep in mind that the whole environment is saved,
including any changes introduced by the automatic loading of the startup files,prefs.lsp and
startup.lsp. This means the saved image might have more changes than those introduced
by the patches, and it is possible that the interaction between the startup files and the
patches could cause Lisp to be in an inconsistent state, leading to mysterious failures. These
failures would be hard to debug because suppressing the loading of startup files (a typical
thing to do in the face of unexplained behavior) would not be possible because the files are
already in the image.

Still, it is desirable to create such images. However, you must do it by hand. Here are
the steps. We assume the Allegro CL distribution is inC:\ALLEGRO.

1. You should not read any startup files when creating an image with the patches.
There are four possible startup files, all located in theC:\ALLEGRO directory:
startup.lsp. startup.fsl, prefs.lsp, andprefs.fsl. Move all such files that exist to a
different directory or change their names temporarily. Lisp will now start up
without reading any startup file.

18 ALLEGRO CL for Windows: Getting Started

2. Start Allegro CL in the usual way. Do not type anything to the Toploop window
or choose anything from any menu.

3. ChooseSave Image... from the submenu displayed by choosingImages from the
File menu.

4. Supply an image name when asked for one. The name should have the extension
.img. Do not overwriteallegro.img or (if you have the Professional version)
runtime.img, the image files created when you installed Allegro CL for Windows.

5. The Lisp will appear to restart. At this point, the image file has been created and
you can exit from Lisp.

6. Restore any files moved in step 1 to their original location or name.

You may wish to create an icon in the Allegro CL for Windows program group for the
saved image. See the Online Manual entry onsave-image for information on creating
such an icon, and other ways to initiate a saved image. (The quick and dirty way is to start
Allegro CL, chooseLoad Image... from the submenu displayed by choosingImages from
the File menu, and specify your.img file to the dialog that appears.)

Note. An image including patches created as described above willnot load fur-
ther patches. If you receive more patches, put them in theUPDATE\ subdirectory
and create a new image with patches loaded as described above, starting with the
original Allegro CL image.

How do you know what patches are loaded in an image
Each patch file from Franz Inc. pushes its description ontoacl:*patches* when it is
loaded. To see what patches are loaded, pretty-print the value ofacl:*patches* :

(pprint acl:*patches*)

Brief information on what patches are being loaded is printed in the banner when Alle-
gro CL starts up.

What if a patch needs to be updated?
Sometimes a patch file introduces new problems as well as fixing old ones. In that case, a
new patch file (with a later number) is created and the original patch file is replaced with a
stub file. For this reason, please observe the following rules:

ALLEGRO CL for Windows: Getting Started 19

Debugge

• Always grab all patches that are available (including ones you have grabbed
before). This will overwrite existing patch files, but that is what is wanted.

• Always start with the original image when creating a saved image with all
patches loaded. The original image is the image created when Allegro CL is
installed. Load all available patches and create a new saved image containing all
patches.

20 ALLEGRO CL for Windows: Getting Started

7 Example files

Allegro CL for Windows is distributed with numerous examples of Lisp code, illustrating
the Common Lisp language and the extensions supplied with Allegro CL for Windows. In
this section, we provide a brief guide to these examples.

Where examples are located
All examples are in theex directory included with the distribution. The following diagram
shows the various subdirectories ofex:

ex

ext

lang

cg

comtab

txted

topl

dialogs

events

other

pnt

pnitffi16

runtime

ffi32

stred

miscsocket

dde

metafile

structed

ole

mci

ALLEGRO CL for Windows: Getting Started 21

Debugge

The examples are grouped according to category. The names are fairly descriptive. Here
is some more information on the directories.

Theext directory

This directory contains four subdirectories, with examples of comtabs, the text
and structure editors, and the Toploop, in the obvious directories.

The lang directory

This directory contains examples from the manualLisp Introductory Guide.

Thecg directory

This directory contains subdirectories containing programs illustrating particular
features of Common Graphics. The subdirectories have names that describe their
contents.pnt is an abbreviation forpaint.

Theffi16 andffi32 directories

These directories contain examples illustrating the foreign function interface.
One is for 16-bit DLL’s, which only work in Win32s, and the other is for 32-bit
DLL’s, which run under both Win32s and Windows NT. See theForeign Func-
tion Interface manual.

Theruntime directory

This directory contains examples used to build runtime images. The runtime gen-
erator is only distributed with the Professional version of Allegro CL for Win-
dows, but the examples are in every distribution. See theRuntime Generator
manual in theProfessional supplement if you purchased the Professional version.

Thestructed directory

The structure editor is no longer part of Allegro CL for Windows. The source files
for the structure editor are in this directory and can be loaded into Lisp to provide
the functionality available in earlier releases. This is unsupported.

Thedde directory

Examples and information on DDE can be found in this directory.

Thesocket directory

Code and instructions to establish interprocess communication (TCP) using win-
sock.dll can be found in this directory. These examples will only work if you have

22 ALLEGRO CL for Windows: Getting Started

the Professional version of Allegro CL 3.0 for Windows or have purchased the
Socket module.

Themetafile directory

This directory contains a source file (with comments) for Windows Metafile sup-
port. This code provided by a Allegro CL 3.0 for Windows customer is included
as a service and is not supported.

Themci directory

This directory contains unsupported source code for a multimedia interface to
Allegro CL 3.0 for Windows.

Theole directory

This directory contains an unsupported source code for an OLE interface to Alle-
gro CL 3.0 for Windows.

Note that example files withinlang are cumulative: that is, later (by number) files
depend on code in earlier files. You should compile and load earlier files to be sure the later
files will work.

Two text files appear in theex directory:compiler.txt andhints.txt. They contain useful
information about compiler optimization and using Allegro CL for Windows.

ALLEGRO CL for Windows: Getting Started 23

Debugge

8 Anomalies and things to note

In this chapter, we describe features of Allegro CL for Windows which may be different
than you might expect. In each case, the behavior is what is intended (see also theRead This
First document).

• There is a 32K limit on the size of files that can be edited by the text editor (and
thus on the size of Lisp source files that can be opened). If you try to open a larger
file, the following error will be signaled:

If you have a file open and add text so the 32K limit is reached, the system will
not accept additional text (but will not signal an error). (32K is typically between
500 and 1000 lines of text, depending on the average number of characters per
line.) Large files should be broken up into smaller pieces if you wish to use the
text editor on them. Note, however, thatload andcompile-file are not
affected by the 32K limit.

24 ALLEGRO CL for Windows: Getting Started

• The Lisp image will grow as necessary, but only to the limit specified in the
allegro.ini file included in the distribution (it is located in the directory where the
distribution disks were installed -- typicallyc:\allegro\). Here are the default
contents of the file:

The maximum heap size is specified by the HeapSize line. The initial value is
16.00 (indicating 16 Megabytes). You may increase this value to allow for larger
images, if desired. The other parameters control the behavior of the garbage col-
lector and typically do not need to be changed by users. See the entry onStorage
Use under the topicProgramming environment the Online Manual.

• If you initiate stepping with the macrostep in a Toploop window, a Stepper
window appears (as you would expect). You cannot type to the Toploop window
until stepping has completed, however. This is because the Toploop window is
evaluating the form withstep and you must wait until that form completes
before new input is accepted. See chapter 8 of theProgramming Tools
Introduction for more information on Stepper windows.

• Common Lisp is for the most part case-insensitive. Except within strings (i.e.
characters surrounded by " marks), uppercase and lowercase letters will read the
same. Thus, enteringcar , CAR, Car , or caR all denote the symbolCAR. The
system typically prints in the case specified by the variable*print-case* .
The initial value of that variable is:upcase , so initially the system prints in
uppercase. In the documentation, we typically use lowercase, since we believe it
is more readable. If you keep in mind that, outside of strings, for most purposes,
there is no difference between upper and lowercase, the mixture of upper and
lower should not be confusing.

ALLEGRO CL for Windows: Getting Started 25

Debugge

Professional and standard versions are incompatible!
Compiled Lisp (fsl) files generated by the Professional version cannot be read into the stan-
dard version andfsl files generated by the standard version cannot be read into the Profes-
sional Version.

Image (img) files generated by the Professional version cannot loaded into the standard
version (withload-image) and cannot be invoked with the standard versionlisp.exe. Image
files generated by the standard version cannot be loaded into the Professional version (with
load-image) and cannot be invoked by the Professional versionlisp.exe.

Version 2.0 fsl and img files cannot be used by version 3.0
Compiled Lisp (fsl) files generated by the Allegro CL version 2.0 (or 1.0) cannot be read
into Allegro CL 3.0 nor can 2.0 or 1.0 image files (img) be loaded into Allegro CL version
3.0.

Do not use 2.0 patches including FAQ patches
Some patches (in some cases enhancements) for Allegro CL version 2.0 were distributed
in source form, either in the FAQ document or obtained directly from Franz Inc. Do not use
these source patches in version 3.0. In most cases the functionality is already present. If it
is not, please contact Franz Inc. for information on whether the source patch can be used.

26 ALLEGRO CL for Windows: Getting Started

9 Support

Support is available for Allegro CL for Windows. In order to get support, you must first
register your purchase with Franz Inc. Instructions for registering your purchase and infor-
mation on support are included in the Allegro CL for Windows distribution. See the section
Support in theRead This First document for more information. If you have misplaced the
Read This First document, please write to us at the address below for information on reg-
istration and support. Support for Professional version customers is also described in the
Professionalsupplement.

Franz Inc.

Allegro CL for Windows Support

1995 University Ave.

Berkeley, CA 94704

USA

510-548-3600

info@franz.com

ALLEGRO CL for Windows: Getting Started 27

Debugge

Index

A
Allegro CL for Windows

anomalies 23
case-insensitive 24
documentation 6
FAQ 16
image size 24
installation 2
maximum image size 24
patches 16
Professional version 3, 4, 7, 18, 21, 25
screen on startup 10
Standard version 3, 4, 25
support 26
things to note 23
WWW page 16

allegro.ini (initialization file) 24
Alt key (used for selecting menu items) 13
anomalies in Allegro CL for Windows 23

B
Break key

interrupting Lisp 14
breaking into Lisp 14
bug fixes (see patches) 16

C
c:\allegro (default installation directory) 3
case-insensitivity 24
cg (directory of examples) 21
Close box 12
Common Graphics

example directory 21
Common Lisp Introduction (manual) 6

28 ALLEGRO CL for Windows: Getting Started

D
dde (directory of examples) 21
dialog boxes

discussed 15
used with Allegro CL for Windows 15

difference between two Enter keys 15
documentation of Allegro CL for Windows 6

E
Editor

size limit 23
Enter key 15

two Enter keys described 15
example files 20
examples

cg directory 21
dde directory 21
ext directory 21
ffi directory 21
files supplied with Allegro CL for Windows 20
lang directory 21
metafile directory 22
runtime directory 21
structed directory 21

ext (directory of examples) 21

F
FAQ (Frequently Asked Questions document for Allegro CL for Windows) 16
ffi (directory of examples) 21
filename length restriction 5
foreign function interface

directory of examples 21
Foreign Function Interface (manual) 6
Franz Inc. (address and phone number) 26

G
General Index (manual) 6
Getting Started (manual) 6

ALLEGRO CL for Windows: Getting Started 29

Debugge

H
hangs 14
HeapSize (initialization parameter) 24
how to install 2

I
image size

how to set 24
maximum 24

information about Allegro CL for Windows 16
Inside Programming Tools (manual) 6
installation 2

filename length restriction 5
how to install Allegro CL for Windows 3
reinstallation 4

Interface Builder Manual (manual) 6
interrupting Lisp 14

L
lang (directory of examples) 21
Lisp

interrupting 14
things to note 23

M
manuals 6

change bars 9
Common Lisp Introduction 6
Foreign Function Interface 6
General Index 6
Getting Started 6
Inside Programming Tools 6
Interface Builder Manual 6
Online Manual 7
pictures in 8
Professional supplement 7
Read This First 6
Runtime Generator (in Professional supplement) 7

30 ALLEGRO CL for Windows: Getting Started

maximize button (in a window) 12
menu bar 10
menu items

selecting with Alt key 13
menus

Allegro CL for Windows menus 13
keyboard equivalents 13
selecting items with Alt key 13

metafile (directory of examples) 22
MicroSoft Windows (operating system) 12
minimize button (in a window) 12
MS Windows (operating system) 12

N
no response, what to do 14

O
Online Manual 7

P
patches (fixes to Allegro CL) 16

always grab all available patches 19
creating an image with patches loaded 17
do not use patches from release 2.0 25
how to get 16
replacing patches that are defective 18
saved images do not load patches 17
telling what patches have been loaded 18
updating patches 18
what they are 16
when they are loaded 17
where to put patch files 17

process-pending-events (function, common-graphics package)
should be called within cpu-intensive loops 14

Professional supplement manual 7
Professional version of Allegro CL for Windows 3, 4, 7, 18, 21, 25

incompatible with Standard version) 25
program icon (in a window, left clicking displays a menu) 12

ALLEGRO CL for Windows: Getting Started 31

Debugge

R
Read This First (manual) 6
reinstallation 4
runtime (directory of examples) 21
Runtime Generator

directory of examples 21
Runtime Generator (manual, part of Professional supplement) 7

S
scroll bar (in a window) 12
serial number 3
Standard version of Allegro CL for Windows 3, 4, 5, 25

incompatible with Professional version) 25
status bar 11
step (macro)

and stepper window 24
structed (directory of examples) 21
support (availability of) 26
system hanging (what to do) 14

T
Text Editor

32K file size limit 23
size limit 23

32K size limit for text editor files 23
toolbar 10
Toploop Window 11

U
Uninstall (program for uninstalling Allegro CL for Windows) 5

W
what to do if system hangs 14
Win32s (upgrade to MS Windows 3.1, needed for ALLegro CL) 2

installing 2
window

typical Allegro CL for Windows window illustrated 12
Windows 3.1 (Allegro CL for Windows and) 2

32 ALLEGRO CL for Windows: Getting Started

Windows 95 (Allegro CL for Windows and) 2
Windows for Workgroups (Allegro CL for Windows and) 2
Windows NT (Allegro CL for Windows and) 2
Windows operating system

features described 12
World Wide Web page 16

URL address (http://www.franz.com) 16
WWW page 16

Debugge

Allegro CL for
Windows

Lisp Introductory
Guide

version 3.0

October, 1995

Copyright and other notices:

This is revision 1 of this manual. This manual has Franz Inc. document number D-U-00-
PC0-03-51017-3-1.

Copyright 1992-1995 by Franz Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means
electronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademark of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Common Lisp Introduction c - 1

Index

Contents

Preface

1 Introduction
1.1 Getting started 1-2

2 Basic data manipulation
2.1 Defining lists 2-1
2.2 Adding to and removing from lists 2-3
2.3 Introduction to defining functions 2-3
2.4 Inserting comments 2-5
2.5 The super parenthesis 2-5

3 Arithmetic
3.1 Performing calculations 3-1
3.2 Testing numbers 3-4

4 List manipulation
4.1 Extracting elements 4-1
4.2 Substituting elements 4-4
4.3 Combining lists 4-4

5 Introducing input and output
5.1 print and read 5-1
5.2 eval 5-3
5.3 Printing special characters 5-4
5.4 Derivatives of print 5-5

6 Binding and scope
6.1 Free and bound variables 6-1
6.2 Scope 6-3

c - 2 ALLEGRO CL for Windows: Common Lisp Introduction

7 Conditionals
7.1 Testing symbols 7-1
7.2 Logical operators 7-3
7.3 Conditional testing 7-3

8 Iteration and recursion
8.1 Introduction 8-1
8.2 Iteration 8-1
8.3 Recursion 8-5

9 Data structures
9.1 Association lists 9-1
9.2 Property lists 9-2
9.3 Arrays 9-5
9.4 Data abstraction 9-6

10 Lambda
10.1 mapcar 10-1
10.2 apply 10-2
10.3 Filtering 10-3
10.4 Functions as arguments 10-4
10.5 Optional arguments 10-5

11 Macros

12 List storage
12.1 How lists are stored 12-1
12.2 How lists are modified 12-4
12.3 Garbage collection 12-9
12.4 equal, eql and = 12-9

ALLEGRO CL for Windows: Common Lisp Introduction c - 3

Index

13 An Introduction to CLOS
13.1 Generic functions 13-1
13.2 Classes 13-2
13.3 Slots and a better example 13-3
13.4 Class inheritance 13-6
13.5 Method combination 13-8
13.6 Other method types 13-9
13.7 Shared slots and initialize-instance 13-11
13.8 Beyond scratching the surface... 13-12

14 Errors
14.1 Typical error messages 14-1
14.2 User-defined error messages 14-5
14.3 ‘Attempt to set non-special free variable’ warning 14-6

Appendix A Glossary

Index

c - 4 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction p - 1

G
lossary

PREFACE

This manualCommon Lisp Introduction, provides an introduction to Common Lisp as a
programming language. Users who are unfamiliar with Common Lisp can learn about pro-
gramming in Common Lisp from this manual. Note, however, that this manual does not
describe how to use Allegro CL for Windows, in the sense of describing the user interface.
Users familiar with Common Lisp but new to Allegro CL for Windows would do better to
start with theProgramming Tools, which is in volume 2 of the printed documentation.

We are less formal in this manual than in other manuals. We do not concern ourselves
particularly with packages and we often provide abbreviate definitions of functions, leaving
out, for example, keyword and/or optional arguments not needed to explain the point we
are making. Users interested in formal definitions of Lisp functions, variables, macros, etc.
should refer to the Online Manual, where all Common Lisp functions, Allegro CL exten-
sions of standard Common lisp functions, CLOS and MOP, and Common Graphics are
described. The Online Manual is further described at the end of this preface.

The format for defining functions and other objects is also different in this manual than
in the Reference Guides. Here is a typical function definition:

zerop tests whether a number is zero. zerop is clearer and more
efficient than the equivalent (= number 0) .

The object being described is indented but on the left. The description is in Helvetica
type font on the right. Most of the rest of the text is in Times Roman (the same as this para-
graph). Examples and code samples are inCourier .

There are online code examples supplied with the Allegro CL for Windows distribution.
They are in theex\lang\directory read off the distribution disks (typically in theallegro\
directory if you followed the default installation instructions). You can try out those exam-
ples as you read the text. In general, the example filename reflects the chapter from which
the examples are drawn. Note that the examples are cumulative -- that is, examples from
later (by number) files may depend on definitions in earlier files.

We have tried to provide in this manual enough information for a user new to Lisp to
start programming in Lisp. You may, however, want to supplement this manual with other
books about programming in Lisp. There are many on the market. A good general introduc-
tion isLisp by Patrick Winston and Berthold Horn (make sure you use the 3rd or later edi-

p - 2 ALLEGRO CL for Windows: Common Lisp Introduction

tion). A widely admired book introducing CLOS isObject-Oriented Programming in
Common Lisp by Sonya Keene. Both of these books are published by Addison-Wesley of
Reading Massachusetts and should be available from any good bookstore selling computer-
related books.

The Online Manual
Most of the Common Lisp language, including CLOS, is described in the Online Manual.
There is no printed documentation for general Lisp functionality other than the manual you
are now reading. The Online Manual is brought up by choosing eitherManual Entry or
Manual Contents from the Help menu:

The Online Manual is organized into chapters, and in each chapter, the relevant func-
tionality is defined. If you chooseManual Entry , it will open to the definition of the sym-
bol nearest the text cursor if there is one. If there is no such symbol, that fact will be
reported in the status bar and the Online Manual will not be displayed. If the nearest symbol
does not have a definition in the Online Manual, again that fact will be reported in the Status
Bar and the Online Manual will not be displayed. To see the contents of the Online Manual,
chooseManual Contents.

ALLEGRO CL for Windows: Common Lisp Introduction 1 - 1

Introduction

Chapter 1 Introduction

This guide is designed to introduce Allegro CL for Windows to those who are familiar with
conventional programming languages and techniques but have no experience with Lisp. It
is not intended to provide an in-depth understanding of Allegro CL for Windows but should
give a sound introduction to the language and concepts of symbolic programming.

Lisp (the name is derived from LISt Processing) provides all the features of a general-
purpose language but the original objective was to create a language which uses human
expressions and which closely resembles human thinking and reasoning. In time, many
‘dialects’ have evolved, but efforts have been made to combine the best features from these,
resulting in the definition of an industry standard known as Common Lisp. Allegro CL for
Windows adheres strictly to this standard while offering many additional enhancements
including powerful graphics capabilities and an integrated programming environment.

Many of the early criticisms of Lisp concerning speed, size, and complexity have been
successfully addressed as the language has developed and it is hoped that you will find
Allegro CL for Windows a powerful, efficient and flexible development tool for all appli-
cations.

Please note that unless otherwise stated, all comments made about Lisp will refer to both
Common Lisp and Allegro CL for Windows.

1 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

1.1 Getting started

Lisp is a language which demands precise syntax, since it makes no distinction when stor-
ing between data and program. It uses terminology which may be familiar, totally new, or
have different meanings in conventional languages. Other publications about the language
introduce words or phrases which serve only to add to the confusion. We have therefore
striven to keep these to a minimum throughout the text, but we have included the more
common ones in a glossary in the appendix.

Most programs are calledfunctions and there are many useful functions provided by
Lisp. Tocall a function, a typical format would be:

(fn a1 a2 ... an)

wherefn is the function name anda1 ...an are the arguments.

Consider this simple example:

(+ 3 2 5)

where+ is the function of addition and 3, 2, and 5 are the arguments. 10 is the value
returned.

Unlike conventional mathematical notation, the function (in this case, addition) appears
first. It is also possible to combine functions but it is important to remember thatLisp
always evaluates the arguments before applying the function. Using another simple
mathematical example, we can subtract two numbers and divide the result as a single oper-
ation:

(/ (- 28 4) 2)

In this example, the argument(- 28 4) is evaluated first and the returned value is
then divided by 2. Note that the argument(- 28 4) is in itself a function call and therefore
follows the function syntax format.

This is how the Top Loop window should appear on the screen. (You will see an actual
date and time, of course, but they were determined after this manual went to the printers.)

ALLEGRO CL for Windows: Common Lisp Introduction 1 - 3

Introduction

So far we have used mathematical examples, but Lisp’s greatest strength lies in its abil-
ity to manipulate symbolic data which has no mathematical context. This will become clear
in the following chapter. It will be helpful if you try out the examples as we go along. You
can read the example files into a text edit window. You can evaluate the forms in the exam-
ples by placing the cursor at the beginning of the form and pressing Alt-Enter (equivalently,
pressing the Enter key next the numeric keypad). You can also type the examples in
directly. In that case, input may be followed by a carriage return, that is, the Enter key next
the alphabetic keyboard, thus allowing you to lay out your programs to make them easier
to read. Lisp will not try to execute until it sees a complete form and then the form will be
evaluated.

1 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 2 - 1

B
asic data

m
anipulation

Chapter 2 Basic data
manipulation

 In Lisp there are three basic types of data which are known assymbols, numbers, andlists.

• Symbols are named data objects. For example,dog , cat andman are symbols.
They may also be functions and variables used within programs and have some
other features which are explained later.

• Numbers fall into four categories: Integers, Floating-point, Ratios and Complex.
13, -56.2, 22/7 and #C(0 2) are examples of each of these categories of numbers:
#C(0 2) is the square root of -4, namely 0 + 2i.

• A list is a series of elements enclosed in parentheses. Each element may be a
symbol, number or another list, thus nested structures can be constructed to
represent complex data.(dog bites man) is a list of three elements.

In Lisp, an item of data can be evaluated to yield a value. In this context, such an item
is referred to as aform. As we shall see later, Lisp programs are simply collections of forms
to be evaluated. Some forms in the following examples may be preceded by a quote mark
(’) which indicates that the form is not to be evaluated; it is a literal expression. The quote
mark will be discussed later in more detail, as willsetf which also appears below.

2.1 Defining lists

Let us assume that we wish to create a list of things that we like. Remembering that the ele-
ments must be enclosed in parentheses, our list could be:

(lasagne claret ferraris mozart summer)

2 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

In order to refer to this list without typing it out in full each time, a name can be given
to it such aslikes and this assignment would be done as follows:

(setf likes
’(lasagne claret ferraris mozart summer))

to which Lisp would respond:

(LASAGNE CLARET FERRARIS MOZART SUMMER)

likes now has the list as its value, and the list is returned as the value of thesetf
form. In this example, we are not primarily interested in the returned value, but in the
assignment which took place. The assignment is described as a side effect of the evaluation.

Note: Many forms, especially mathematical ones, have no side effects and are eval-
uated simply to return a value. However, side effects should always be borne in
mind, as unexpected ones can cause bugs.

The contents of any expression are displayed by typing its name. For instance,

likes

would return:

(LASAGNE CLARET FERRARIS MOZART SUMMER)

In a similar way, we can assign the things we dislike to another list calleddislikes ,
and display the contents as follows:

(setf dislikes
’(taxation cocktails skiing rain

 (hairy spiders) work))

→ (TAXATION COCKTAILS SKIING RAIN (HAIRY SPIDERS) WORK)

dislikes
→ (TAXATION COCKTAILS SKIING RAIN (HAIRY SPIDERS) WORK)

In this example, we not only have a list of individual elements we dislike, but we also
have a list as an element of the list, namely(hairy spiders) . All the elements are top-
level elements whilehairy andspiders are second level elements.

ALLEGRO CL for Windows: Common Lisp Introduction 2 - 3

B
asic data

m
anipulation

2.2 Adding to and removing from lists

Having defined our lists, we may wish to add or remove elements. If, for example,skiing
has been assigned to the wrong list, it must be removed fromdislikes and added to
likes . Lisp provides some built-in functions which allow us to do this.

cons The cons function adds an item to the front of a list. It takes
two arguments: the second argument must be a list, but the
first may be any element.

(setf likes (cons ’skiing likes))
→ (SKIING LASAGNE CLARET FERRARIS MOZART SUMMER)

skiing is added to the elements stored inlikes and the result is assigned back to
likes .

remove The function remove deletes an item from a list. Like cons ,
it accepts two arguments, the second of which must be a list.

(setf dislikes (remove ’skiing dislikes))
→ (TAXATION COCKTAILS RAIN (HAIRY SPIDERS) WORK)

skiing is deleted from the elements stored indislikes and the result is assigned
back todislikes .

Note: In both these examples the functionscons andremove do not affect the
original lists: they create temporary lists. In order to make these changes perma-
nent,setf is used to assign the temporary lists to the original ones.

2.3 Introduction to defining functions

In order to define a function, Lisp needs to know three things:

1. The name of the function.

2. The number of arguments it needs.

3. The task the function is to perform.

2 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

To combine the two steps in our previous example, we can write a simple function to
which we will give the namenewlikes . This is the name that will be used each time we
wish to call this function.

defun This macro lets you define your own functions.

(defun newlikes (name)
 (setf likes (cons name likes))
 (setf dislikes (remove name dislikes)))

→ NEWLIKES

In the above example, the three requirements are met as follows:

1. The name of the function isnewlikes .

2. There is one argument, the variablename.

3. The function takes the value of the variablename, adds it to the list
likes and removes it from the listdislikes .

Note: Even though thedefun form is defining a function, it is still evaluated and,
in this case, returns the name of the function,newlikes .

If we now wish to call our function to transfer cocktails fromdislikes to likes ,
we do so in this way:

(newlikes ’cocktails)
→ (TAXATION RAIN (HAIRY SPIDERS) WORK)

newlikes returns the modified listdislikes since this is the value returned by the
last form within the function.

newlikes now joins the built-in functions1 (cons , remove , +, / , etc.) and becomes
another function we can call at any time. It is in every way the equal of these functions.
Unlike some other programming languages, there is nothing special or “magic” about built-
in functions.

1. In some contexts, built-in functions are referred to asprimitives.

ALLEGRO CL for Windows: Common Lisp Introduction 2 - 5

B
asic data

m
anipulation

2.4 Inserting comments

In any programming environment, meaningful comments are invaluable to the program-
mer: they make the code easier to understand and therefore easier to modify or debug. The
start of a comment in Lisp is indicated by a semicolon, and all text following it to the end
of the line is ignored.

(defun newlikes (name)
 ;add name to start of likes

 (setf likes (cons name likes))
 ;delete name from dislikes
 (setf dislikes (remove name dislikes)))

→ NEWLIKES

Throughout this guide we have tried to make the examples self-explanatory and com-
ments are therefore only given to clarify particular points. However, we recommend that
you include as many comments as necessary to make your own code easier to understand.
Remember that although you know exactly what a program does when you write it, you
will probably have forgotten in six months’ time when you look at it again.

2.5 The super parenthesis

The above functionnewlikes requires three parentheses at the end to terminate the func-
tion correctly. This is made easy for you with the automatic flashing of parentheses which
match. However, as you begin to write more complex functions, you could require five or
more concluding parentheses. Rather than relying on the flashing of matching parentheses,
you can finish with a single ‘super-bracket’: a right-hand square bracket (]). This instructs
Lisp to terminate all matching parentheses. You may wish to try this on some of the exam-
ples.

2 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 3 - 1

A
rithm

etic

Chapter 3 Arithmetic

Before looking in more detail at the other functions which are available to manipulate lists,
let us examine the mathematical aspects of Lisp. As stated earlier, Lisp does not follow con-
ventional mathematical notation but maintains uniformity in the syntax of all function calls:
the required function is always the first element of the call. In all the examples below, the
value returned by Lisp follows each function call and explanations are given only where
relevant.

3.1 Performing calculations

+ The addition function.

(+ 3.1 2.7) → 5.8
(+ 3.1 2.7 100.1) → 105.9
(+ 4 7) → 11
(+ 4.7 1.1) → 5.8

Note that 9/2 and 17/2 are ratios. Unlike most other programming languages, Lisp
allows you to use fractions as well as integers and floating point numbers.

(+ 9/2 4) → 17/2

- The subtraction function.

(- 3.1 2.7) → 0.4
(- 3.1 2.7 100.1) → -99.7
(- 1 3 5 7) → -14
(- 4) → -4
(- -4) → 4

3 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

* The multiplication function.

(* 3.1 7.0) → 21.7
(* 3.1 7.1 10.0) → 220.1
(* 4 3) → 12
(* 4.0 3) → 12.0

/ The division function.

(/ 21.7 7.0) → 3.1
(/ 21.0 3.0) → 7.0
(/ 21 3) → 7
(/ 21 3.0) → 7.0
(/ 9 2) → 9/2
(/ 9.0 2) → 4.5
(/ 9.0 2.0) → 4.5

If more than two arguments are supplied, the first argument is divided by each of the
other arguments in turn.

(/ 30 2 3) → 5
(/ 139 7 2) → 139/14

If only one argument is supplied, the result is the reciprocal of that argument.

(/ 2.0) → 0.5
(/ 2) → 1/2

sqrt The square root function.

(sqrt 4) → 2.0
(sqrt 4.0) → 2.0

If the argument is negative the result is not an error, but a complex number. In Lisp,
complex numbers are displayed in the form #C(3 2) which is equivalent to 3 + 2i.

(sqrt -4) → #C(0.0 2.0)
(sqrt (/ -1 49)) → #C(0.0 0.142857)
(+ 2 #C(0 1/7)) → #C(2 1/7)

expt The exponential function.

ALLEGRO CL for Windows: Common Lisp Introduction 3 - 3

A
rithm

etic

(expt 2 10) → 1024
(expt 10 2) → 100
(expt 2/3 3) → 8/27
(expt -4 1/2) → #C(1.22514845490862E-16 2.0)

If either argument is a floating point number, the result is a floating point number and so
an approximation may occur. In this case 0.0 is correctly approximated by
1.22514845490862E-16.

log The log function. The base defaults to e, unless another
base is specified by giving it as a second argument.

(log 1) → 0.0
(log 10) → 2.3025
(log 10 2) → 3.3219
(log 238) → 5.4723

abs The absolute value function.

(abs 8) → 8
(abs -8) → 8
(abs 8.9) → 8.9
(abs -8.9) → 8.9

truncate The truncate function, which rounds towards zero. Note that
truncate returns multiple values. The first is the argument
truncated: the second is the argument supplied minus the
first value returned.

(truncate 13.6) → 13 0.6
(truncate 0.7) → 0 0.7
(truncate -0.7) → 0 -0.7
(truncate -1.7) → -1 -0.7

round The round function, which rounds to the nearest integer.
Note that round returns multiple values. The first is the
argument rounded to the nearest integer: the second is the
argument supplied minus the first value returned.

(round 3.1) → 3 0.1
(round 3.7) → 4 -0.3

3 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

If the argument is exactly midway between two integers, the first value returned is the
nearest even integer.

(round 3.5) → 4 -0.5
(round 4.5) → 4 0.5
(round 5.5) → 6 -0.5

rem The remainder function, which returns the remainder when
the first argument is divided by the second.

(rem 17 4) → 1
(rem 4 17) → 4
(rem -17 4) → -1

float The float function, which converts integers into floating
point numbers.

(float 4) → 4.0
(/ (float 7) (float 4)) → 1.75

3.2 Testing numbers

Lisp provides a number of functions to perform tests which are called predicates. Techni-
cally, a predicate is a function that returns one of two values: True or False. These are nor-
mally indicated by the constantsnil (False) andt (True). However, any non-nil value
also indicates that a test is true and is often of more use if the result of the test is to be used
in further computations. The predicates listed below can be used on numbers and symbols
which have numeric values. This is demonstrated by defining the symbols zero, one, two,
three and four to represent their numeric equivalents and using them throughout the exam-
ples.

(setf zero 0 one 1 two 2 three 3 four 4) → 4

Note: As we have used a single form to assign a number of values, the form returns only
the last value assigned.

> The descending order function, as its name suggests, tests
that all the arguments supplied are in descending order.

ALLEGRO CL for Windows: Common Lisp Introduction 3 - 5

A
rithm

etic

(> 100 10 one 0.1) → T
(> 10 100 1 0.1) → NIL
(> 100 10 four zero) → T

< The ascending order function tests that all the arguments
supplied are in ascending order.

(< 1 3 5 7 11 9) → NIL
(< 1 three 5 7 9 11) → T

max returns the largest (most positive) argument.

(max 1 2 3 4 5 6 7) → 7
(max (* 1 7) (* 2 6) (* 3 5)) → 15
(max (expt 2 10) (expt 10 2)) → 1024

min returns the smallest (most negative) argument.

(min 1 2 3 4 5 6 7) → 1
(min (expt 2 10) (expt 10 2)) → 100

= tests whether numbers have the same numerical value,
regardless of their type.

(= (/ 2 3) (/ 4.0 6.0)) → T
(= (/ two three) (/ 4.0 6.0)) → T
(= 3.141592653 (/ 22 7)) → NIL

evenp tests whether an integer is even.

(evenp 17) → NIL
(evenp (expt 3 4)) → NIL
(evenp two) → T
(evenp (* three 17)) → NIL

oddp tests whether an integer is odd.

(oddp 17) → T
(oddp (expt 3 4)) → T
(oddp two) → NIL
(oddp (* three 17)) → T

minusp tests whether a number is negative.

3 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

(minusp 22) → NIL
(minusp -13) → T
(minusp (- three)) → T

zerop tests whether a number is zero. zerop is clearer and more
efficient than the equivalent (= number 0) .

(zerop (* 2 0)) → T
(zerop (+ 2 0)) → NIL
(zerop zero) → T
(zerop (- four three one)) → T

ALLEGRO CL for Windows: Common Lisp Introduction 4 - 1

List
m

anipulation

Chapter 4 List manipulation

4.1 Extracting elements

The following functions allow us to extract elements from lists, either as individual ele-
ments or as parts of the list. It should be noted that none of these functions affect the con-
tents of the original list in any way.

first returns the first top-level element of the specified list. The list
may be supplied as a literal or by its symbolic name.

(first ’(cocktails skiing lasagne claret ferraris mozart summer))
→ COCKTAILS
;Recall in chapter 2 that likes was the name given to the list
;’(cocktails skiing lasagne claret ferraris mozart summer).
(first likes)
→ COCKTAILS

rest is the complement of first . It returns the list without the
first element.

(rest ’(cocktails skiing lasagne claret ferraris mozart summer))
→ (SKIING LASAGNE CLARET FERRARIS MOZART SUMMER)
(rest likes)
→ (SKIING LASAGNE CLARET FERRARIS MOZART SUMMER)

car and cdr are identical to first and rest respectively. These func-
tions are remnants from the original implementation of Lisp
which have been superseded by first and rest ; they are
not mnemonic and as such, more difficult to remember.
However, they are still prevalent in many programs and pub-

4 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

lications about Lisp and you should therefore be familiar with
them and their operation.

Severalcar s andcdr s are needed to find an element buried deep in a list. All the com-
binations of up to fourcar andcdr s are defined as separate Lisp functions. The names of
all these functions begin withC and end withR and in between is a sequence ofAs andDs
corresponding to the composition performed by the function (cxxr cxxxxr). For exam-
ple, these mean the same:

(cadr likes) ≡ (car (cdr likes))
(cadddr likes) ≡ (car (cdr (cdr (cdr likes))))

(≡ is not a Lisp expression but in this manual means “is equivalent to”.).

second to tenth are nine other functions provided by Lisp to complement
first and rest and enable each of the first ten elements
to be extracted from a list. If we remember that first is the
same as car , it follows logically that second is the same as
cadr , third is the same as caddr , and so on.

(fourth likes)
→ CLARET
(tenth likes)
→ NIL

In this example, there is no tenth element in the listlikes , so the value returned isnil
which is also the empty list ().

nth returns the specified element of a list where first (car) is
element zero of the list. It takes two arguments: an integer
and a list. The integer must have a non-negative value. nth
overcomes the limitations of second to tenth as the inte-
ger can represent any element, no matter how long the list.
Consider the following:

(nth 0 likes) ≡ (first likes) ≡ (car likes)
(nth 3 likes) ≡ (fourth likes) ≡ (cadddr likes)

If the integer is greater than the length of the list,nil (the empty list) is returned.

ALLEGRO CL for Windows: Common Lisp Introduction 4 - 3

List
m

anipulation

last takes a single argument (which must be a list) and returns a
list with one element which is the last item of the specified
list. If the list is empty, nil is returned.

(last likes)
→ (SUMMER)

Before we leave this section, it may be helpful to explain a bit more about the role of the
quote mark in Lisp syntax. As said earlier, Lisp adheres strictly to the principle that the
function call is always the first element after the opening parenthesis. It also assumes that
everything which follows is to be evaluated unless told not to. Let us look at an example:

(first (rest likes))

tells Lisp to performrest on the value oflikes to produce:

(SKIING LASAGNE CLARET FERRARIS MOZART SUMMER)

and then to applyfirst to this result to produce:

SKIING

If we have not given our list a name, we can write the list out in full but it must be pre-
ceded by a quote mark or Lisp will not recognize it as data. If we write:

(first (rest (cocktails skiing lasagne claret
ferraris mozart summer)))

Lisp does not know otherwise so it treats(cocktails....) as a function call and
skiing , lasagne , etc. as variables. This would result in an unbound variable error. By
inserting a quote mark in front of this list, Lisp immediately knows that this is literal data
and does not try to evaluate it.

(first (rest ’(cocktails skiing lasagne claret
ferraris mozart summer)))

→ SKIING

quote is a special function which takes a single argument and
returns that argument without evaluating it. The quote mark
is a shorthand form for quote . Thus:

’(a b c) ≡ (quote (a b c))

4 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

4.2 Substituting elements

So far we have seen how to make lists and how to extract individual list elements. Let us
now look at a way to replace elements within lists.

subst The subst function substitutes one element in a list for
another. Unlike the other functions we have used so far,
subst works through each level of the list to find every
occurrence of the specified element. It takes three argu-
ments, the last of which must be a list. The other arguments
may be symbols, numbers or lists. subst is called in the fol-
lowing format:

(subst n o l)

where

n is the new argument.

o is the old argument.

l is the list containing the old argument.

For example, ifx has the value(y z) :

(subst ’y ’z x)
→ (Y Y)
(subst ’z ’a ’(a b (a b b a) b a))
→ (Z B (Z B B Z) B Z)

4.3 Combining lists

There are three main functions which can be used to combine lists:cons , list and
append . Although these may appear to do the same job, they produce very different
results and before proceeding it is important to understand the ways in which they differ.
Choosing the right one may be very important later.

cons The function cons adds an item to the front of a list (see also
Section 2.2). It takes two arguments, the second of which

ALLEGRO CL for Windows: Common Lisp Introduction 4 - 5

List
m

anipulation

must be a list. The first can be a symbol, number or list. The
function returns a new list with the first argument as the first
element.

(cons ’a ’(b c d))
→ (A B C D)
(cons ’(a b) ’(c d))
→ ((A B) C D)

list The function list also makes a new list from the argu-
ments but the elements of the list are not merged. It can take
any number of arguments which may be symbols, numbers
or lists.

(list ’a ’(b c d))
→ (A (B C D))
(list ’(a b) ’(c d))
→ ((A B) (C D))

append The function append creates a new list by merging two or
more lists into a single list. It takes two or more arguments,
each of which must be a list. The argument lists are not
changed.

(append ’(a b) ’(c d))
→ (A B C D)
(append ’(a (b c)) ’((d e) f))
→ (A (B C) (D E) F)

In order to clarify this, let us look at the way the three functions operate on the same
data.

(setf x ’(y z)) → (Y Z)
(cons x x) → ((Y Z) Y Z)
(list x x) → ((Y Z) (Y Z))
(append x x) → (Y Z Y Z)

It is well worth taking the time to make sure you are absolutely clear about the differ-
ences between these three functions as you could end up with a totally different result from
the one intended.

4 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 5 - 1

Input and
output

Chapter 5 Introducing input
and output

5.1 print and read

Simply, input and output in Lisp are handled by the functionsread andprint respec-
tively. Although you have not been aware of it, you have seen these in action already when
you have tried out the examples. User interaction is handled by the Toploop. Its purpose is:

1. To accept and print to the screen the code you type in.

2. To evaluate it.

3. To print the returned value.

It usesread andprint to do this.read andprint are obviously interactive.

print The print function accepts one argument. It prints the
value of the argument. However, when the expression is
evaluated, the Toploop also prints the returned value. This
gives the appearance of the same thing being printed twice
but these two operations are not the same: a value which is
returned can be used by another function; a value which is
printed cannot. Look at the following example:

;Recall in chapter 2 that dislikes was defined as the list
;’(taxation rain (hairy spiders) work).
(print (first dislikes))
TAXATION
→ TAXATION

5 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

Notice thatTAXATION is printed twice: as the value of(first dislikes) and as
the value returned after it has been evaluated.TAXATION could, if required, be used as an
argument of another function such asnewlikes . We can demonstrate this with another
simple example:

(cons ’cheese (print (rest dislikes)))
(RAIN (HAIRY SPIDERS) WORK)
→ (CHEESE RAIN (HAIRY SPIDERS) WORK)

Here,(RAIN (HAIRY SPIDERS) WORK) is the value printed byprint while
(CHEESE RAIN (HAIRY SPIDERS) WORK) is the value returned by thecons func-
tion. Withoutprint , the intermediate step would not have been printed. Printing is a side
effect of evaluatingprint and the output is always followed by a space.

read The function read does not accept any arguments. When
called, it causes Lisp to pause while it monitors the keyboard
and accepts whatever the user types. The input becomes
the value of read but it is not evaluated. There is no indica-
tion that read has been called and it is therefore usual to
precede a read call by printing a suitable prompt. Let us
write a function which takes four input numbers and works
out the average. Note in this example that even when a
function has no arguments, we must still include the empty
list as its argument list.

(defun meanfour1 ()
 (/ (+ (read) (read) (read) (read)) 4))

→ MEANFOUR1

To call this function, one must type (meanfour1) followed by enter, then each of 2, 4, 6
and 8 followed respectively by enters. The screen will appear as:

(meanfour1)2468
→ 5

The four input values are added together and then divided by 4 to produce the returned
value, 5.

ALLEGRO CL for Windows: Common Lisp Introduction 5 - 3

Input and
output

Later on, it may be possible for you to write your ownread andprint functions.
However, it is worth noting that you must be very careful about naming your functions, as
you can overwrite existing functions if the name has been used before. Should you try to
write your own system functions, it is safer to precede the name with an identifier. For
example,my-read , my-cons , etc. (Common Lisp also has quite a sophisticated "pack-
age" system, which allows the user to put his or her functions in a separate name space,
avoiding this kind of conflict.)

5.2 eval

As well asprint andread , the Toploop also uses a function calledeval . Obviously,
the correct sequence is(print (eval (read))) .

eval accepts one argument which it evaluates. eval is how Lisp
runs programs. When you eval an object, you are convert-
ing data into program. Thus:

(eval 23) → 23
(eval nil) → NIL
(setf fred 63) → 63
(setf y ’fred) → FRED
(eval y) → 63
(eval ’y) → FRED
(eval ’’y) → Y
(eval ’’’y) → ’Y
(eval ’(first (rest ’(x y z)))) → Y
(eval (first (rest ’(x y z)))) → FRED

eval is not often used in code because all the arguments to function calls are evaluated
automatically. When usingeval , a frequent mistake is to force too many evaluations.

5 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

5.3 Printing special characters

Certain characters have special meanings toprint andread . Spaces, quotes and brack-
ets are taken as list delimiters and lowercase letters in symbols are converted into uppercase
letters byread . Sometimes it is desirable to suppress this special treatment. You would
have to do this if you wanted to create a symbol containing spaces or lowercase letters, or
one which would otherwise be taken as a number.

To introduce a single special character into a symbol, precede it with a backslash char-
acter (\), known as the single escape character. If, for example, we wish to use the phrase
“annual (net) income ” as a single symbol, we could do this as follows:

(setf asymbol ’annual\ \(net\)\ income)
→ ANNUAL\ \(NET\)\ INCOME

Notice that the lowercase letters we typed in the symbol have been converted to upper-
case.

The backslash indicates that the following single character is to lose any special mean-
ing it may have. This is clumsy when there are many characters to suppress, as in the above
example. An easier way to do this is to surround the whole symbol with vertical bars,
known as multiple escape characters.

(setf another-symbol ’|ANNUAL (NET) INCOME|)
→ ANNUAL\ \(NET\)\ INCOME

Notice that we had to type the whole symbol in uppercase this time and also that it was
still printed out in the single escape format. This ilustrates an important point - once a sym-
bol has been read in, it forgets all about exactly how it was typed in. So, as far as Lisp is
concerned,

ANNUAL\ \(NET\)\ INCOME ºº ≡ |ANNUAL (NET) INCOME|

However, note that (because of case differences):

ANNUAL\ \(NET\)\ INCOME

is not the same as:

|annual (net) income|

ALLEGRO CL for Windows: Common Lisp Introduction 5 - 5

Input and
output

5.4 Derivatives of print

There are derivatives ofprint available to assist in the presentation of output. Below are
listed three of these which you may find useful.

terpri The function terpri forces a carriage return which has the
effect of making the output begin on the next line. It does not
take any arguments.

prin1 The function prin1 is like print but it does not start with a
new line nor does it print a space after the output.

princ The function princ is like prin1 except that princ does
not include any quotation marks or vertical bars which are
included in the arguments. princ prints only the argument
without any spaces or carriage returns.

The following example demonstrates the use ofprinc andterpri within a function
to format the output:

(defun meanfour2 (first second third fourth)
 (terpri)

 (princ "The average of")
 (terpri)
 (princ first)
 (princ " ")
 (princ second)
 (princ " ")
 (princ third)
 (princ " ")
 (princ fourth)
 (terpri)
 (princ "is")
 (/ (+ first second third fourth) 4))

→ MEANFOUR2

If you now type:

5 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

(meanfour2 2 4 6 8)

you should see:

The average of
2 4 6 8
is
5

ALLEGRO CL for Windows: Common Lisp Introduction 6 - 1

B
inding

and scope

Chapter 6 Binding and scope

6.1 Free and bound variables

So far, whenever we have wished to assign a value to a variable, we have usedsetf . This
“fixes” the value which then remains until a new assignment is encountered. We may wish
to use a variable within a section of code but not know if it has been preset to a different
value elsewhere. Fortunately, we can give a variable a temporary value within a part of a
program usinglet . As soon as we leave the section of code governed by thelet , the tem-
porary value is discarded and the original value is restored. The process of assigning a spe-
cific value within a particular section of code is known as binding. If we use a variable
within a function without establishing a new binding, that variable is described as being
free (or unbound) in relation to the function. Obviously, if we need a temporary variable, it
is wise to uselet to create a new binding to guarantee that we do not trample on our own,
or anyone else’s, variables.

let creates a new binding for a variable or variables within a
function or section of code and assigns a value to it. On leav-
ing the let form, the binding is discarded and the original
binding and value are restored.

(setf day ’monday)
→ MONDAY
(let((day ’tuesday))

(print day))
TUESDAY
→ TUESDAY
(print day)
MONDAY
→ MONDAY

6 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

(setf x 5)
→ 5
(setf y 7)
→ 7
(let ((x 10))

(* x y))
→ 70
x
→ 5

Remember that values are printed once byprint and again as the value of the expres-
sion.

In the second example usinglet above,x is bound by thelet , whereasy is free.

In Chapter 5, we wrote a function (meanfour2) which calculated the average of four
numbers. The numbers were included as arguments to the function but we will now see how
we can uselet to allow us to accept the numbers from the keyboard usingread .

(defun meanfour3 ()
 (let ((total 0))

 (terpri)
 (princ "Enter the first value: ")
 (setf total (+ total (read)))
 (terpri)
 (princ "Enter the second value: ")
 (setf total (+ total (read)))
 (terpri)
 (princ "Enter the third value: ")
 (setf total (+ total (read)))
 (terpri)
 (princ "Enter the fourth value: ")
 (setf total (+ total (read)))
 (terpri)
 (princ "The average is ")
 (princ (/ total 4))))

→ MEANFOUR3

If you usemeanfour3 to calculate the average of 2, 4, 6 and 8 you will see the follow-
ing:

ALLEGRO CL for Windows: Common Lisp Introduction 6 - 3

B
inding

and scope

(meanfour3)
Enter the first value: 2
Enter the second value: 4
Enter the third value: 6
Enter the fourth value: 8
The average is 5
→ 5

 Be careful if any of your variable bindings refer to other bindings in thelet : all the
values are calculated before making the bindings (i.e. “in parallel”).

(setf a 1)
→ 1
(let ((a 2) (b (+ a 1)))

 b)
→ 2

Note that 2 (rather than 3) is the value returned. The functionlet* permits binding in
series. See the entry onlet* in Allegro CL Online Help for more information.

Before leaving this section, note thatdefun also creates a new binding for any vari-
ables within the function. You can bind several variables at the same time withlet : simply
include more variable-value pairs as shown below:

(let ((a 0) (b 1) (c 2) (d 3))
 (+ a b c d))

→ 6

6.2 Scope

This brings us to another consideration in Lisp known as scope. Thescope of a variable
binding is the range of the program in which the variable can be used to access a particular
value. Lexical scoping (sometimes called textual) is the normal sort of scoping in Common
Lisp: the value bound to a variable is determined by the textual context in which the vari-
able is used.

(setf x 5)
→ 5

6 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

(defun print-x ()
 (print x))

→ PRINT-X
(let ((x 10)) (print x) (print-x))
10
5
→ 5

The free variablex in the functionprint-x is bound to the value 5, even when the
function is called afterx has been lexically bound to 10 in thelet . x has the value 10 when
used within thelet : it is the textual context that determined the binding. Lexical scoping
in Lisp is exactly the same as in most other block-structured languages, such as Pascal or
Modula-2. The alternative to lexical scoping is dynamic scoping. Here the value bound to
a variable takes account of any bindings which may have been made dynamically, i.e. as
the program is executing. We will repeat the same example using dynamic scoping, but to
do this, we need to use a special variable.

Lisp variables which use dynamic scoping are known asspecial variables. Since their
use can lead to obscure and difficult bugs, most Lisp programmers use them only sparingly,
if at all. We mention them here only to show the difference between the two types of scop-
ing. You should consult a more advanced text for details of how to use them.

You can make a special variable withdefvar : this declares the variable to be special
wherever it is used. It is a good idea to give special variables distinctive names so that you
do not re-use them accidentally. A common practice is to surround the name with* ’s.

(defvar *y*)
→ *Y*
(setf *y* 5)
→ 5
(defun print-y ()

 (print *y*))
→ PRINT-Y
(let

 ((*y* 10))
 (print *y*)
 (print-y))

10
10

ALLEGRO CL for Windows: Common Lisp Introduction 6 - 5

B
inding

and scope

→ 10
y
→ 5

Notice that theprint-y function now picks up the value of*y* bound by thelet ,
rather than the global value. This binding was the one most recently executed.

6 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 7 - 1

C
onditionals

Chapter 7 Conditionals

So far, we have seen how to define functions and write small programs. But, as in other lan-
guages, without an ability to choose between alternatives, our programs will be limited in
their operation. This chapter covers different aspects of decision making in Lisp.

7.1 Testing symbols

In Section 3.2 we defined a predicate as a function which returns a value of True or False
and looked at some which operated on numbers or symbols with numeric values. We will
now look at predicates which perform tests on symbolic rather than arithmetic data.

symbolp tests whether its argument is a symbol.

(symbolp ’lasagne) → T
;Recall in chapter 2 that likes was defined as the list
;’(cocktails skiing lasagne claret ferraris mozart summer).
(symbolp likes) → NIL
(symbolp ’(taxation rain work)) → NIL
(symbolp nil) → T

listp tests whether its argument is a list.

(listp likes) → T
(listp ’lasagne) → NIL
(listp ’(taxation rain work)) → T
(listp nil) → T

numberp tests whether its argument is a number.

7 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

(numberp 6) → T
(numberp ’lasagne) → NIL
(setf five 5) → 5
(numberp five) → T
(numberp ’five) → NIL

equal tests whether its two arguments are the same. There are
other ways of doing this, but these will be discussed later.
Notice that two numbers are considered to be equal if they
have the same value and are of the same type.

(equal five 5) → T
(equal 5 5.0) → NIL
;Recall in chapter 2 that dislikes was defined as the list
;’(taxation rain (hairy spiders) work).
(equal dislikes ’(taxation rain (hairy spiders) work)) → T

null tests whether its argument is an empty (null) list and returns
t if it is.

(null ’()) → T
(null dislikes) → NIL

member tests whether an object is an element of a list. It accepts two
arguments, the second of which must be a list; the first may
be a symbol or another list. If the first argument is not
present, member returns nil , otherwise it returns the frag-
ment of the list that begins with the first argument. This is
useful if the result is to be used in further computations.

(member ’rain likes) → NIL
(member ’rain dislikes) → (RAIN (HAIRY SPIDERS) WORK)
(member ’spiders dislikes) → NIL

In the last example,spiders is not found because it is not an individual element.
member does not identify objects which are buried within lists.

ALLEGRO CL for Windows: Common Lisp Introduction 7 - 3

C
onditionals

7.2 Logical operators

As well as the predicates discussed, Lisp provides the logical functionsand , or andnot .
When successful,and andor return the last value evaluated which is also useful for fur-
ther computations.

and takes one or more arguments which it evaluates from left to
right. If any argument returns nil , the and returns nil and
any remaining arguments are not evaluated. If no argument
evaluates to nil , the value of the last argument is returned.

(and (member ’claret likes) (member ’rain dislikes))
→ (RAIN (HAIRY SPIDERS) WORK)
(and (member ’work likes) (member ’rain dislikes))
→ NIL
(and (evenp 8) (numberp 6) (listp likes))
→ T

or takes one or more arguments which it evaluates from left to
right. If any argument returns a non-nil value, the or
returns the value and any remaining arguments are not eval-
uated.

(or (evenp 9) (member ’rain dislikes))
→ (RAIN (HAIRY SPIDERS) WORK)

not returns t if its argument returns nil when evaluated, other-
wise it returns nil .

(not (member ’rain likes)) → T
(not (member ’rain dislikes)) → NIL

7.3 Conditional testing

Just as in conventional programming languages, conditional testing is done in Lisp using
if . Theif form corresponds to theif-then-else construct found in other languages
but the termsthen andelse are implicit. The call follows the format:

7 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

(if condition-form then-form else-form)

It is possible to omit theelse-form but if the value ofcondition isnil then noth-
ing is done and the returned value of theif form isnil .

Let us now create a function which takes two input radii and compares them to see if
they are equal, in which case it would be a circle, otherwise it would be an ellipse. The for-
mat of our condition will be:

(if (the radii are equal)
 (then it is a circle)
 (else it is an ellipse))

Remember that Lisp programs can be indented as much as needed to make them easily
readable.

(defun shape ()
 (let ((r1 0) (r2 0))

 (terpri)
 (princ "Enter the first radius: ")
 (setf r1 (read))
 (terpri)
 (princ "Enter the second radius: ")
 (setf r2 (read))
 (terpri)
 (if

 (equal r1 r2)
 (princ "This is a circle!")
 (princ "This is an ellipse!"))

 (terpri)))
→ SHAPE

If we now call the function and specify that each radius is 3, you should see:

(shape)
Enter the first radius: 3
Enter the second radius: 3
This is a circle!

→ NIL

ALLEGRO CL for Windows: Common Lisp Introduction 7 - 5

C
onditionals

Thenil is returned as the value of the last form evaluated, which is theterpri .

There will be many instances when you need to combine a series of expressions for use
in programs, especially in conditional forms. This is done quite simply by usingprogn .
defun andlet both containprogn s in their definitions, thus allowing them to accept
one or several forms in a single call.

progn takes a number of forms and evaluates them sequentially
from left to right. The last form evaluated produces the value
returned by the progn .

(progn (setf a ’a1) (setf b ’b1) (setf c ’c1))
→ C1

when is a derivative of if which may prove more useful than if
in certain circumstances.

The format of awhen form is:

(when condition form(s))

condition is evaluated first. If it returnsnil , no form is evaluated and the returned
value isnil . If condition returns a non-nil value, theform s are evaluated sequen-
tially from left to right.

(when x a b c) ≡ (if x (progn a b c) nil)

unless is similar to when in its format but the converse in its mode
of operation.

(unless condition form(s))

condition is evaluated first. If the result is non-nil , theform s are not evaluated
andnil is the value returned. If the result isnil the form s are evaluated sequentially
from left to right.

(unless x a b c) ≡ (if x nil (progn a b c))

To illustrate the operation ofwhen andunless , try replacing theif statement in the
previous example with the following:

(when (equal r1 r2)
(princ "This is a circle!"))

7 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

(unless (equal r1 r2)
(princ "This is an ellipse!"))

Older versions of Lisp did not have theif , when or unless constructs available, so
conditional testing was done using thecond form. Just ascar andcdr have been super-
seded byfirst andrest (although they are still available for use), thecond form has
been superseded byif . Whenever possible,if should be used in preference tocond but
you should nevertheless be aware of how to use it. In other languages,

(cond (a ...)
(b ...)
(c ...)

)

would be roughly the same as

If a then...
(b ...)
else if b then...
(c ...)
else if c then...

cond takes one or more clauses, which are lists of forms. cond
considers each clause in turn, evaluating the first form in the
clause. If that form return true, the remainder of that clause
is evaluated and cond returns the result (skipping any
remaining clauses). If the value of the form is nil , cond
moves to the next clause and evaluates the first form of it.

The format is as follows:

(cond (condition1 form(s)1)
(condition2 form(s)2)
...
(conditionn form(s)n))

Each condition is evaluated in turn until a non-nil value is found. This terminates any
further evaluations of conditions and Lisp then evaluates the corresponding form(s). It is

ALLEGRO CL for Windows: Common Lisp Introduction 7 - 7

C
onditionals

possible to omit the form(s) of a clause, in which case Lisp returns the value of the condi-
tion as the result. If none of the conditions return a non-nil value,cond returnsnil .

(cond (condition1 form11 form12)
(condition2 form21)
(condition3 form31))

º
(if condition1

 (progn form11 form12)
(if condition2

form21
(if condition3

form31
nil)))

We can now replace thewhen andunless constructs in ourshape function with the
following:

(cond ((equal r1 r2) (princ "This is a circle!"))
(t (princ “This is an ellipse!”)))

In this instance, we are saying that ifr1 andr2 are notequal , by default it must be
an ellipse. This result is forced by placingt as our second condition:t always evaluates to
t so if the first test fails, the second will always be true. This is the same as the else con-
struct which is implicit inif .

7 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 8 - 1

Iteration and
recursion

Chapter 8 Iteration and
recursion

8.1 Introduction

In most other conventional languages, problems which require repeated execution of the
same code are solved usingiteration, more commonly known as loops. Lisp provides many
iterative forms for the construction of loops: it is not possible to include every instance in
this introductory text. A full explanation of every iterative construct is given in the discus-
sion under the topicControl Structure in Allegro CL Online Help. The more frequently
used forms are discussed in this chapter and can be used as a guide to the general operation
of these structures.

Many problems can also be solved by a process known asrecursion. Sometimes you
will find yourself in the situation where the function you need to call is actually the function
you are writing. We will demonstrate such a problem later. You can overcome this dilemma
by making your function recursive. A recursive function is one which calls itself to assist
in the solving of a problem. In other words, it is a function which contains a call to itself in
its own definition.

8.2 Iteration

Lisp provides a number of constructs for iterative processing. Allegro CL for Windows also
makes available an enhancement to Common Lisp: thefor construct. However, the sim-
plest place to start is with the most basic of the iterative structures:loop . In order to escape
from loop , we will usereturn which will be explained shortly.

8 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

loop is the simplest of the iterative structures in Lisp. It does not
control any variables but continues to execute the code
indefinitely. In order to use loop effectively, some sort of
counter must be implemented to control the number of times
the loop is executed.

In an earlier example we defined a function (meanfour3) which took in four values
and calculated the average. It was tedious enough to write out the prompts and the same
code four times; imagine what it would be like if we had to do this ten times. This is an ideal
situation for a loop, but we must set up a counter to stop it after four passes through. Note
that this is an instance where we have to useprogn to combine several forms to make a
single form for our “else” condition.

(defun meanfour4 ()
 (let ((total 0) (count 1))

 (terpri)
 (loop

 (if (equal count 5)
 (return (/ total 4))
 (progn

 (princ "Enter value No.")
 (princ count)
 (princ ": ")
 (setf total (+ total (read)))
 (setf count (+ count 1))
 (terpri))))))

→ MEANFOUR4

In this example, we have not only used the counter count to control the loop: we have
also used it within the prompt to the user to indicate which number to input. If we run this,
we should see:

(meanfour4)
Enter value No.1: 2
Enter value No.2: 4
Enter value No.3: 6
Enter value No.4: 8

ALLEGRO CL for Windows: Common Lisp Introduction 8 - 3

Iteration and
recursion

→ 5

Obviously this works perfectly, but in a more complicated section of code it is easy to
forget to update the counter or to position the update wrongly and end up in an infinite loop.

do is another means of executing a section of code repeatedly
which also requires that a control variable is set up and mod-
ified to terminate the loop. The format of a do is shown
below:

(do ((<parameter1> <initial-value1> <update-form1>)
(<parameter2> <initial-value2> <update-form2>)
...
(<parametern> <initial-valuen> <update-formn>))

(<termination test> <zero or more forms> <result-form>)
<loop body>)

Any parameters which are defined at the start of ado are bound and assigned values just
as if let had been used. If the termination test is met, execution of the loop is finished, and
the result form is returned as the value of the loop. Otherwise, the forms in the loop body
are executed, then the parameters are updated by the update forms and another termination
test made. The iteration continues until the termination test is met. Just as inlet , the ini-
tialization and update of variables are done in parallel. In other words it does not matter in
what order you place your update list, as on each pass the values are computed and then
reassigned. Any reference to the value of a variable in an update is taken as being the value
of the last pass.

Let us write a function which calculates the factorial of a number. Control of the loop is
through the variable control which is decremented on each pass through the loop. When
control reaches zero, the loop is terminated and the answer is returned in the variable result.

(defun factorial1 (x)
 (do ((result 1) (control x))

 ((zerop control) result)
(setf result (* result control))
(setf control (- control 1))))

→ FACTORIAL1

8 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

Remembering thatdo executes the initialization and updates in parallel, we could write
the function this way:

(defun factorial2 (x)
 (do

 ((result 1 (* result control))
 (control x (- control 1)))
 ((zerop control) result)))

→ FACTORIAL2

After the first pass, result and control are assigned the values from(* result
control) and(- control 1) respectively.

return is a way of terminating loop and do forms. As soon as
return is encountered, execution of the loop is terminated
and the value of the form following the return is returned
as the result. If there is no form following return , nil is the
value returned.

As we saw in ourloop example, thereturn was given as thethen clause of the con-
ditional such that when our termination value was achieved, the loop ceased to execute.

for As both loop and do can be quite cumbersome to use, Alle-
gro CL for Windows includes a for construct which simpli-
fies the operation of iterative processes.

for ... from ... to ... do ...

is an enhancement in Allegro CL for Windows for which there is no equivalent in Common
Lisp (although other iterative constructs can be used to achieve the same result). The func-
tion meanfour4 can be modified to use this as follows:

(defun meanfour5 ()
 (let ((total 0))

 (for I from 1 to 4 do
 (terpri)

 (princ "Enter value no.")
(princ I)
(princ ": ")
(setf total (+ total (read))))

ALLEGRO CL for Windows: Common Lisp Introduction 8 - 5

Iteration and
recursion

(/ total 4)))
→ MEANFOUR5

Once again, the division is the last form evaluated and its value is therefore returned as
the value of the function. This is obviously a much cleaner construction than the previous
example as there is no need to monitor and update the control variable.

The counter in thefor loop below is set up to progress in single steps from 0 to 10 but
it is possible to override this by including a conditional statement before thedo . Suppose
we wish to perform an iterative task on every second pass through a program, we could use
something like this:

(for I from 0 to 10
when (evenp I)
do (...

In this case, the code governed by the DO is only executed when I has an even value.

There are many variations available to the user of the FOR loop including a variety of
conditions and forms such as:

FOR ... FROM ... TO ... WHILE ... DO
FOR ... FROM ... TO ... UNTIL ... DO
FOR ... FROM ... TO ... UNLESS ... DO
FOR ... IN ... COLLECT

A complete explanation of every available form is given under the topicControl Struc-
ture in Allegro CL Online Help.

8.3 Recursion

Although recursion can be used in many modern languages, it is a technique not as widely
employed as it could be. Usually it is obvious which problems are more readily solved by
recursion rather than iteration, but (as we shall see shortly) there are occasions when,
because of its complexity, a problem can only be solved recursively.

Consider the following function which is a simplified version of the Lisp functionrem.
It expects two positive integers and calculates the remainder when the first (the numerator)
is divided by the second (the denominator). Firstly, we must cater for the special cases when

8 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

either of the parameters is zero, or the denominator is greater than the numerator. Assuming
that none of these apply, the function calls itself and continues to do so until a solution is
found. At each call, the value of numerator is (- numerator denominator) for the next stage
of the process. When the value of numerator is less than the value of denominator, the value
of numerator is the result.

(defun my-rem1 (numerator denominator)
 (cond ((< numerator 1) 0)

((< denominator 1) ’division-by-zero)
((< numerator denominator) numerator)
(t (my-rem1 (- numerator denominator) denominator))))

→ MY-REM1

If we now call this function with the arguments 11 and 3, the value of the arguments will
be adjusted as follows:

Call N Numerator Denominator
1 11 3
2 8 (- 11 3) 3
3 5 (- 8 3) 3
4 2 (- 5 3) 3

At this stage, the numerator is less than the denominator, which terminates the condi-
tional form. The result (2) is held in the numerator and is the value returned by the condi-
tional. You can monitor what happens during this, and any other function, using thetrace
facility. Thetrace facility is turned on using(trace fn) and remains active until it is
turned off with(untrace fn) . To see what happens duringmy-rem1 , try:

(trace my-rem1)
(my-rem1 11 3)
(untrace my-rem1)

What happens during each level of recursion (the flow of control) can be represented in
a pictorial manner as in Figure 1 below. Because the flow of control is a straight line,my-
rem1 could have been written using a loop.

ALLEGRO CL for Windows: Common Lisp Introduction 8 - 7

Iteration and
recursion

Let us now examine a more complicated example: the Fibonacci sequence. Each num-
ber in the sequence is the sum of the preceding two:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89

If we wish to calculate a specific term in the sequence, we have to know the preceding
two values. This is easily done with a recursive function:

(defun fibonacci (a-number)
(cond ((= a-number 0) 1)

((= a-number 1) 1)
(t (+ (fibonacci (- a-number 1))

(fibonacci (- a-number 2))))))
→ FIBONACCI

This function is said to be doubly recursive because each call tofibonacci can create
two new calls, not one. If we call the function with the argument 4, the diagrammatic rep-
resentation in Figure 2 below shows what happens. This branching flow of control would

11,3 2

2

2

28,3

5,3

2,3

1

2

3

4

8 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

be very difficult to code iteratively but is a natural choice for recursion. Although the com-
plete tree is complicated, at each node there is a simple decision to make. Thus each node
can be regarded as a separate problem, and is handled by a single call offibonacci . It
is this ability to break up large problems into smaller, more easily solved subproblems that
makes recursion such a powerful technique.

Both of the examples we have looked at so far involved mathematical calculations but,
as with other areas of Lisp, recursion can be applied equally well to manipulate symbols
and lists. Consider the following example which will be our own version of the system
functionmember. By repeatedly examining the first element of the list and calling itself on
the rest of the list, the function works out whether an element is present. First of all, we
must ensure that the list is not empty. This test will also handle the case when the element
is not present and we have run out of elements to test.

1

2

2

3

7

986

5

3

4

1

1

1

1

1

0

1

1

1

0

5

3
2

2

2

4

ALLEGRO CL for Windows: Common Lisp Introduction 8 - 9

Iteration and
recursion

(defun my-member1 (an-element a-list)
 (cond ((null a-list) ’not-found)

((equal an-element (first a-list)) a-list)
(t (my-member1 an-element (rest a-list)))))

→ MY-MEMBER1

Sometimes, an element is hidden in a list within a list. It is not a top- level element. In
order to search deeper within a list, we can include a further recursivecond clause. Note
that our original recursive clause has to be modified slightly.

(defun my-member2 (an-element a-list)
 (cond ((null a-list) ’not-found)

((equal an-element (first a-list)) a-list)
((listp (first a-list)) (my-member2 an-element
 (first a-list)))
(t (my-member2 an-element (rest a-list)))))

→ MY-MEMBER2

Neither of these functions is an exact replica ofmember.

8 - 10 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 9 - 1

D
ata

structures

Chapter 9 Data structures

So far, we have used variables and lists for storing our data. Lisp provides other structures
for data storage without having enormous lists or a large number of variables. In this chap-
ter we will examine association lists, property lists, arrays and data abstraction.

9.1 Association lists

An association list is a list which contains a number of sublists. The first element of each
sublist is referred to as thekey. For example, the sublist:

(sports tennis golf swimming)

marks tennis, golf and swimming as sports. Retrieving sublists is done withassoc .

assoc The function assoc takes two arguments, the second of
which must be an association list. The first argument is the
key and may be any legal Lisp expression. assoc compares
the key with the first of each sublist in the association list
and returns the first sublist whose first element is equal
to the key list. If the key appears in more than one list, only
the first occurrence is “seen”. All other occurrences are
ignored.

For example, we can defineleisure as being, amongst other things,sports .

(setf leisure ’((sports tennis golf swimming)
(sports jogging squash rugby)
(likes eating sleeping sports)))

→ ((SPORTS TENNIS GOLF SWIMMING)

9 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

 (SPORTS JOGGING SQUASH RUGBY)
(LIKES EATING SLEEPING SPORTS))

(assoc ’sports leisure)
→ (SPORTS TENNIS GOLF SWIMMING)

The other instances of sports are ignored. If the key is not found,assoc returnsnil .

An association list is a type of list and, as such, can be manipulated usingsubst ,
first , rest , cons , etc.

9.2 Property lists

Property lists are a development of the association list concept. Remember that in Lisp, a
symbol can be given a value. That value may be a number, another symbol or a list. In the
previous section we learned how to set up an association list by specifying the key as the
first item. We can use this to define a person.

(setf fred ’((familyname smith)
(sex male)
(age 30)

 (occupation programmer)))
→ ((FAMILYNAME SMITH) (SEX MALE) (AGE 30)
 (OCCUPATION PROGRAMMER))

The symbolfred has a number of associated lists as its value. However, Lisp also per-
mits symbols to have properties. A property consists of two elements: a property name and
a property value. We can use this concept to definefred another way by saying thatfred
has the property names surname, sex, age and occupation and the property values smith,
male, 30 and programmer. This will mean that we can ask iffred has the property sex and,
if so, have the value male returned rather than having to use(cadr (assoc ’sex
fred)) to return male from the association list. The setting up of a property list is slightly
more complicated than an association list and we will therefore find out how to retrieve
items first.

get is used to return the property value from a property list. It
expects two arguments: a symbol name and a property
name.

ALLEGRO CL for Windows: Common Lisp Introduction 9 - 3

D
ata

structures

If we assume that we have set up our property list forfred , we can retrieve properties
as follows:

(get ’fred ’sex) → MALE
(get ’fred ’address) → NIL

If the property name is not found or if the property value of the name isnil , nil is
returned.

setf and get are used together to create and modify property lists. If a
property name is not found, it is added to the property list
and the property value assigned. If the property name is
found, its value is replaced with the new property value.

Let us look at an example:
(setf (get ’fred ’familyname) ’smith) → SMITH

The get returnsnil and so the property namefamilyname is added tofred ’s
property list and its property value becomes smith.

We can now define the rest offred ’s properties thus:

(setf (get ’fred ’sex) ’male
(get ’fred ’age) 30
(get ’fred ’occupation) ’programmer)

→ PROGRAMMER

As many properties as are needed may be added in this way, which means that very
exact definitions can be created. This is also a way of updating information in a property
list since the value in thesetf form will replace any existing value if the property name
is found.

(setf (get ’fred ’occupation) ’analyst) → ANALYST

The property value can be any legal Lisp expression. It is possible, for example, to make
the value an association list. Suppose that we wish to define a leopard, breaking down the
facts into three categories (always, usual and possible). These can be association lists of
characteristics which apply under these headings, thus allowing us to create a complex pic-
ture of a leopard from which it is relatively simple to retrieve information.

9 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

(setf (get ’leopard ’always) ’((is-a mammal)
(blood warm)
(eyes forward-facing)
(genus felis)))

→ ((IS-A MAMMAL) (BLOOD WARM)
 (EYES FORWARD-FACING)(GENUS FELIS))

(setf (get ’leopard ’usual) ’((color yellow-black-spots)
(habitat savannah)
(prey gazelles)
(temperament dangerous)))

→ ((COLOR YELLOW-BLACK-SPOTS) (HABITAT SAVANNAH)
(PREY GAZELLES) (TEMPERAMENT DANGEROUS))

(setf (get ’leopard ’possible) ’((color black)
(habitat zoos)
(prey monkeys)
(temperament tame)))

→ ((COLOR BLACK) (HABITAT ZOOS) (PREY MONKEYS)
 (TEMPERAMENT TAME))

In order to retrieve data from this complex structure we must use something like this:

(second (assoc ’habitat (get ’leopard ’possible))) → ZOOS

Notice that if we had usedrest instead ofsecond , the returned value would have
been (ZOOS) .

As you can see, an association list used as the value of a property is an excellent way of
saving complicated read-only data. However, accessing individual elements which need to
be modified can be a tricky process at this stage, and we would therefore recommend that
this structure is not used for any data which requires frequent updating.

remprop is used to remove property names and their values from a
property list. It takes two arguments: the symbol name and
the property name. The property name and its value are
removed from the property list of that symbol.

(remprop ’fred ’occupation) → T

symbol-plist displays the contents of a property list. It takes one argu-
ment which is the name of the symbol whose property list is

ALLEGRO CL for Windows: Common Lisp Introduction 9 - 5

D
ata

structures

to be displayed. Each property name is immediately fol-
lowed by its property value.

(symbol-plist ’fred)
→ (OCCUPATION ANALYST AGE 30 SEX MALE FAMILYNAME SMITH)

9.3 Arrays

All the data structures we have looked at so far involve symbols and lists. However, Lisp
does allow the construction of arrays, which are conceptually similar to those in other lan-
guages. The most significant difference is that Lisp arrays can accept any type of data: inte-
gers, floating point numbers, symbols or even lists. Data types can be mixed in any
combination without any need to predefine what will be stored where. An array in Lisp may
have any number of dimensions including zero. A zero-dimensioned array will have one
element. Different implementations may have different limits but every version should sup-
port arrays of up to seven dimensions. The number of dimensions supported can be found
in array-rank-limit . The numbering of cells in any dimension always begins from
zero.

setf and

make-array are used together to define arrays.

Let us define an array to represent a Tic-Tac-Toe grid.

(setf oxo (make-array ’(3 3)))
→ #2A((NIL NIL NIL) (NIL NIL NIL) (NIL NIL NIL))

This represents the nine squares of the grid. If we were defining a chessboard, we could
choose whether we wished to represent the chessmen as simple integers from 1 to 32 or we
could generate descriptive symbols. We could even create a property list for each symbol
specifying its range of movement and its value in relation to the state of play.

setf and

aref are used together to retrieve and/or modify cells within an
array.

9 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

Suppose we wish to position an X in the top right hand corner of the grid, we would do
so thus:

(setf (aref oxo 0 2) ’x) → X

An O can be positioned in the centre of the grid as follows:

(setf (aref oxo 1 1) ’o) → O

In each case,aref locates the cell within the array andsetf assigns the value.

Used on its own,aref returns the value from a cell in an array. For example, we can
find out if a cell of the grid has already been used by

(aref oxo 1 1) → O

9.4 Data abstraction

We can now choose different data structures to suit our requirements when storing infor-
mation and we have written functions to operate on the data. But what happens if we decide
to reformat the data? We could edit every function which uses the data, which would be fine
with the small programs we have written so far. However, when we have lots of functions
manipulating our data this would be a very tedious task.

The concept ofdata abstraction is to write functions so that they are independent of the
data format. Instead, we provide a few functions which access our data directly and ensure
that our other functions call these. If we decide to change our data format, which invariably
we will, we need only to change these access functions. There should be three types of
access function associated with the data structure:

1. Functions to build the data.

2. Functions to modify the data.

3. Functions to find items in the data.

These functions may be designed to operate on a specific set of data, or they may be
made more general to operate on any data which is held in that format.

Earlier, we created property lists and saw how complicated it can be to retrieve items;
we had to remember exactly where and how the data was saved. Let us now write some

ALLEGRO CL for Windows: Common Lisp Introduction 9 - 7

D
ata

structures

functions to help us create, modify and find our data. First of all, we need to be able to create
a structure and, for this purpose, we will use ourfred example. Consider:

(defun set-prop (name prop value)
 (setf (get name prop) value))

→ SET-PROP

This function can be used to add new properties or to modify existing ones.

(defun find-prop (name prop)
 (get name prop))

→ FIND-PROP

We now have a way of finding items in our structure. These may seem trivial and not
worth the bother. Why not simply use theget andsetf of get ? Later, if we decide to
store properties in an association list, we would have only two small functions to rewrite.

Back tofred . We need some functions to access the items in the structure:

(defun set-person-familyname (person value)
 (setf (get person ’familyname) value))

→ SET-PERSON-FAMILYNAME
(defun person-familyname (person)

 (get person ’familyname))
→ PERSON-FAMILYNAME

We could go on to create these for every item infred ’s property list. This is boring.
Lisp overcomes the problem of writing all these for you.

defstruct short for def ine struct ure, defstruct automatically
writes all these functions for us.

Rather than explicitly definingfred , we can create aperson structure into which we
can store details of anyone we wish:

(defstruct person
 (familyname ’unknown)
 (sex ’unknown)
 (age ’unknown)

9 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

 (occupation ’unknown))
→ PERSON

This declares that aperson is an object with four named components: familyname,
sex, age and occupation. When thedefstruct is evaluated, several things happen:

(1) A function calledmake-person is generated to create other person data structures
with the four components. Thus:

(setf fred (make-person))
→ #S(PERSON FAMILYNAME UNKNOWN SEX UNKNOWN

AGE UNKNOWN OCCUPATION UNKNOWN)

will create a new data structure (denoted by #S) with the four components set to the initial
values. The values can be specified when the structure is defined, as follows:

(setf fred (make-person
:familyname ’smith
:sex ’male
:age 30
:occupation ’programmer))

→ #S(PERSON FAMILYNAME SMITH SEX MALE AGE 30
OCCUPATION PROGRAMMER)

The component names are preceded by a colon to distinguish them from the component
values. If any component is omitted, it is set to the initial value.

(2) The symbolperson becomes the name of a data type of which other person data struc-
tures are elements. This name can be passed to the functiontypep which tests whether an
object is of a particular type; it returns non-nil if it is, nil if it isn’t.
(typep fred ’person)
→ (#<STRUCTURE-CLASS PERSON #X38835C>
 #<STANDARD-CLASS STRUCTURE-OBJECT #XD83B8>
 #<BUILT-IN-CLASS T #XD6AF8>)

(3) A function calledperson-p is defined which also returns non-nil if its argument is
an object of the typeperson , andnil if it isn’t.
(person-p fred)
→ (#<STRUCTURE-CLASS PERSON #X38835C>
 [...])

ALLEGRO CL for Windows: Common Lisp Introduction 9 - 9

D
ata

structures

(4) The four components become functions, each with one argument, that return the values
held in each.

(person-familyname fred) → SMITH

(5) The data can be modified usingsetf and the appropriate selector using this construc-
tion:

(setf (person- component name) value)

where

component is the selector

name is the name of the structure

value is the new value

To modify fred ’s occupation, we would write:

(setf (person-occupation fred) ’analyst) → ANALYST

All other components can be modified in this way.

Finally, the#s syntax can be used to read in the structure:
(person-p ’#s(person familyname fred))
→ (#<STRUCTURE-CLASS PERSON #X38835C>
 #<STANDARD-CLASS STRUCTURE-OBJECT #XD83B8>
 #<BUILT-IN-CLASS T #XD6AF8>)

9 - 10 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 10 - 1

Lam
bda

Chapter 10 Lambda

Throughout this document we have emphasized the important role of functions in Lisp pro-
gramming and we have defined many functions usingdefun . There will be times, how-
ever, when a function will be called on so few occasions that you may consider it a waste
of time to create one. In Lisp, it is possible to establish a “temporary” function which is
“discarded” once a value has been returned. This is done bylambda and is known as a
lambda expression. It differs from a function defined usingdefun in that it does not
require a name since it is not called as a built-in function.

In this chapter you will notice the appearance of the character sequence#’ . This indi-
cates that the elements following are code. In the same way that’(form) is equivalent to
(quote (form)) , #’(form) is equivalent to(function (form)) .1

For example,

#’(lambda (x)(* x x x))

is a function of the argument which returns the cube of its argument. But how would we
use it, since it has no name? The answer is that there are functions which expect functions
as their arguments. We can either pass them a function name or a lambda expression. Let
us now see lambda expressions in action.

10.1 mapcar

mapcar is known as a mapping function since it “maps” the operation of a function over
the items in a list and collects the results as a list. If we look at some examples, the operation
should become clear:

1. It is legal to precede a lambda expression with the single quote (it will eventually achieve the
desired result) but it is much more efficient to use#’ .

10 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

(mapcar #’evenp ’(1 2 3 4)) → (NIL T NIL T)

In this instance, the functionevenp is applied in turn to each item in the list andmap-
car returns a list of the values returned. Let us now create a list of the cubes of these num-
bers. We have no built-in function to do this, but we do not want to define a named function
just for this task: however, we can use the lambda expression we saw in the previous sec-
tion.

(mapcar #’(lambda (x) (* x x x)) ’(1 2 3 4))
→ (1 8 27 64)

mapcar can be used with functions of more than one argument:

(mapcar #’equal ’(1 2 3) ’(1 4 9 16)) → (T NIL NIL)

equal requires two arguments for comparison. Here it is applied three times compar-
ing 1 with 1, 2 with 4, and 3 with 9.mapcar continues until the end of the shortest list is
reached, ignoring any remaining elements.

(mapcar #’max ’(1 2 3 4) ’(1 4 9 16) ’(11 2 1 0))

→ (11 4 9 16)

10.2 apply

There will be situations where you wish to use the elements of a list (such as the result of
mapcar) as arguments to a function, but that function cannot operate on a list. For exam-
ple, if we wish to add the results from the previous example, the addition function will not
accept a list as its arguments; it needs to know the individual elements to add together. The
functionapply extracts the elements from the list and provides them as arguments for the
function:

(apply #’+ ’(11 4 9 16)) → 40

Of course, we can combine these two operations:

(apply #’+ (mapcar #’max ’(1 2 3 4)
’(1 4 9 16)
’(11 2 1 0)))

→ 40

ALLEGRO CL for Windows: Common Lisp Introduction 10 - 3

Lam
bda

You will find apply a very useful function, not just in conjunction withmapcar .

10.3 Filtering

Filtering is the process of looking at lists and deciding whether or not to discard elements.
This is another area where the ability to pass functions as arguments is crucial. Two built-
in functions,remove-if andremove-if-not , are provided to help with this process.

Both functions expect a predicate of one argument and a list. They operate in a similar
way tomapcar ; each element of the list is passed to the predicate in turn for testing.

remove-if returns a list containing any elements which returned nil
from the test:

(remove-if #’(lambda (x) (< x 4))
’(1 2 3 4 5 4 3 2 1))

→ (4 5 4)

remove-if-not is the converse of remove-if ; it returns a list containing
any elements which returned a non-nil value from the test:

(remove-if-not #’(lambda (x) (< x 4))
’(1 2 3 4 5 4 3 2 1))

→ (1 2 3 3 2 1)

In the above example,remove-if-not expected a function of one argument and we
wanted to give< two arguments;lambda solved the problem. The second argument to<
was a constant, but it could equally well have been a variable.

(defun cut-off (value a-list)
; returns a list of
;elements which exceed
;value
(remove-if-not

#’(lambda (x)
(< x value))

a-list))

(cut-off 4 ’(1 2 3 4 5 4 3 2 1))

10 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

→ (1 2 3 3 2 1)
(cut-off 2 ’(1 2 3 4 5 4 3 2 1))
→ (1 1)

10.4 Functions as arguments

If we want to write a function which accepts a function as an argument, we need a way of
telling Lisp to use the argument as a function.funcall does this.

funcall can take several arguments. The first must evaluate to a
function which is applied to the remaining arguments.

(defun trace-call (fn argument)
 (print fn)
 (princ " called on ")
 (prin1 argument)
 (print fn)
 (princ " returns ")
 (prin1 (funcall fn argument)))
→ TRACE-CALL
(trace-call #’first ’(a b))
→ FIRST called on (A B)

FIRST returns A
 A

This gives a hint as to howtrace is implemented.

(funcall fn argument) is not the same as(fn argument) . Remember that
Lisp assumes that the first item in a list is the name of a function.(fn argument) would
cause Lisp to look for a function calledfn . (funcall fn argument) causesfn to
be evaluated as a variable to produce the returned function to be called (in this case,
first).

(defun do-to-number (number minus-fn plus-fn)
 ;if number is negative minus-fn is applied to it
 ;otherwise plus-fn is applied to it
 (funcall

 (if (< number 0)

ALLEGRO CL for Windows: Common Lisp Introduction 10 - 5

Lam
bda

 minus-fn
 plus-fn)

 number))
→ DO-TO-NUMBER
(do-to-number -1 #’- #’(lambda (x) (* x x x)))
→ 1

(do-to-number 4 #’- #’(lambda (x) (* x x x)))
→ 64

Here is a simple version ofmapcar , which can only operate on one list:

(defun my-mapcar (fn a-list)
 (if (null a-list)

nil
(cons

(funcall fn (first a-list))
(my-mapcar fn (rest a-list)))))

→ MY-MAPCAR

10.5 Optional arguments

As their name implies, optional arguments may or may not be included in a call to a func-
tion which includes them in its argument list. They are used in general-purpose functions
which cannot know how many arguments to expect, such as+, - , * , / andlist . We can
incorporate them in our own functions when we wish a default value to be applied unless
told otherwise.

If we now look at a simple example we can see how they work. Thelog function in
Lisp defaults to the basee unless another base is specified. Let us suppose it only works to
the basee but we need to be able to work to any base. We can write our own function to do
this:

(defun my-log1 (num base)
 (/ (log num) (log base)))

→ MY-LOG1

Every time we call this function we must specify the number and the base:

10 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

(my-log1 8 2) → 3.0

Now let us suppose that we want to default to base 10 if no base is given. This can be
done by specifying base as an optional argument: you may or may not include it, as you
wish.

&optional indicates that the argument following is optional.

Using &optional , we can modify our function to default to base 10 if no base is
given.

(defun my-log2 (num &optional base)
 (if (not base)
 (setf base 10))
 (/ (log num) (log base)))

→ MY-LOG2

We now have the option of specifying a base if we wish, or defaulting to base 10 if we
don’t.

(my-log2 8 2) → 3.0
(my-log2 100) → 2.0

There is, however, another way of specifying a default parameter, by including it in the
argument list.

(defun my-log3 (num &optional (base 10))
 (/ (log num) (log base)))

→ MY-LOG3

This is a much cleaner construct thanmy-log2 , which works in exactly the same way:

(my-log3 8 2) → 3.0
(my-log3 100) → 2.0

There may be any number of optional arguments.

&rest Works in a similar way to &optional , except that it takes a
single argument whose value becomes a list of all the argu-
ments given, other than required and optional arguments.

ALLEGRO CL for Windows: Common Lisp Introduction 10 - 7

Lam
bda

In Lisp, there is no function to give the sum of squares, so let us write one:

(defun sum-of-squares1 (a b)
 (+ (* a a) (* b b)))

→ SUM-OF-SQUARES1

This will give us the sum of the squares of any two arguments we supply:

(sum-of-squares1 2 4) → 20

But how do we write it so that it takes any number of arguments? We use&rest .

(defun sum-of-squares2 (&rest nums)
 (let ((result 0))

 (for i in nums
 do

 (setf result (+ (* i i) result)))
 result))

→ SUM-OF-SQUARES2

Any arguments supplied are made into a list. On every pass through thefor loop, each
number is squared and added to result.

(sum-of-squares2 1 2 3 4) → 30

10 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction 11 - 1

M
acros

Chapter 11 Macros

The concept of macros in Lisp is similar to that in other languages: they allow the user to
use a shorthand for sections of code that are used repeatedly. Let us say, for example, that
we are adding items to lots of lists. We will repeatedly have to write:

(setf variable (cons value variable))

It would be nicer and cleaner if we could simply write something like:

(push value variable)

Why not definepush as a function? Consider(push ’x y) . Before the function call,
y would be evaluated and its value given topush . push would not know about y and
therefore would not be able to store the new list into it. The solution is to make(push ’x
y) rewrite itself as(setf y (cons ’x y)) . This can be achieved by definingpush
as a macro, not as a function.

When a Lisp form is being evaluated or compiled, if it is a macro call, the macro is
called to compute the actual form to be evaluated or compiled. The macro receives parts of
the macro call unevaluated. The actual form may itself be a macro call in which case the
process is repeated. This process of converting a macro call into the actual form for evalu-
ation is known as macro expansion.

During compilation, the macro calls are expanded and lost, which makes the code more
difficult to debug (for example, macro calls may not be traced). We would therefore recom-
mend that whenever possible, a section of code should be defined as a function rather than
a macro.defun andlet are actually macros rather than functions, which is why they do
not evaluate their arguments in the way that+, mapcar , cons and all the other functions
do. A macro is defined usingdefmacro , which is similar todefun .

11 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

defmacro requires the same information as defun : the name of the
macro, the arguments to it and the task the macro is to per-
form.

push is already defined in Lisp, but let us suppose that it does not exist. We could define
it very simply with something like this:

(defmacro my-push (value variable)
 (list ’setf variable

(list ’cons value variable]
→ MY-PUSH

To see if a macro has been correctly defined, we can expand the call with
macroexpand-1 .

macroexpand-1 expects a macro call as its argument. It expands the macro
call once and returns two values: the expansion and t . If the
argument is not a macro call, it returns the argument and
nil . Allegro CL for Windows makes the facility available
from a menu.

(macroexpand-1 ’(my-push ’x y))
→ (SETF Y (CONS ’X Y))

T

The definition of a macro can be greatly simplified by usingbackquote . back-
quote is not specifically related to macros but, since it can play such an important part in
macro definitions, this is an appropriate time to introduce it.

backquote is a special form of quote which tells Lisp not to evaluate
what follows except those objects preceded by a comma.

For example:

(setf name ’test)
→ TEST
‘(this is a ,name list)
→ (THIS IS A TEST LIST)

ALLEGRO CL for Windows: Common Lisp Introduction 11 - 3

M
acros

However, this may not always produce the result you require when working with lists:

(setf name ’(list within a))
→ (LIST WITHIN A)
‘(this is a ,name list)
→ (THIS IS A (LIST WITHIN A) LIST)

If you do not wish(list within a) to be enclosed in parentheses, you could use
append or the special construct,@ within backquote .

‘(this is a ,@name list)
→ (THIS IS A LIST WITHIN A LIST)

When writing macros, the backquote allows the macro to be thought of as a template
with the expressions filled in as required. Suppose, for example, that we wish to write our
own version oflet . First of all we have to create a couple of helping functions:

(defun vars-of (vars+values)
 (for var-value-pair in vars+values
 collect
 (if (symbolp var-value-pair)

 var-value-pair
 (first var-value-pair]

→ VARS-OF
(defun values-of (vars+values)

 (for var-value-pair in vars+values
 collect
 (if (symbolp var-value-pair)

 nil
 (second var-value-pair]

→ VALUES-OF

Now we can define ourlet :

(defmacro my-let (vars+values &rest forms)
 (cons

 (cons ’lambda
(cons (vars-of vars+values) forms))

 (values-of vars+values)))
→ MY-LET

11 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

Using the backquote, this can be simplified thus:

(defmacro my-let (vars+values &rest forms)
 ‘((lambda ,(vars-of vars+values) ,@forms)

 ,@(values-of vars+values]

gensym When writing macros you may wish to create new symbols
which you require to be unique to that code. This is done
using gensym which is short for ’generate symbol’. gensym
allows you to create new symbols that are not normally seen
by the user and are distinct from any with the same name
that may be defined outside that area of code. Although
gensym is not specifically allied to macro definition, its use
when writing macros is obvious.

ALLEGRO CL for Windows: Common Lisp Introduction 12 - 1

List storage

Chapter 12 List storage

This chapter explains how lists are stored and modified in memory and thus allows us to
see what happens with some of the functions we have discussed. We will also look at some
of the more complicated functions.

12.1 How lists are stored

Lisp uses a method of linking addresses to store lists in memory. Each element of a list is
represented by two pointers in a single address. These pairs of pointers are called cons cells
because as we will see later, they are created by the functioncons . If we set up an example
containing only top-level elements, this should become clear:

(setf a-list ’(this is an ordinary list))
→ (THIS IS AN ORDINARY LIST)

The memory locations of this list would look something like this:

1271: 8022 1273
1272: 8551 1275
1273: 9644 1272
1274: 9640 0
1275: 7998 1274

The numbers in the first column represent the addresses within memory at which the
pointers are stored. Those in the second column represent the actual addresses where the
elements are stored. The third column contains the linking addresses of the pointers for the
next element.

If we start at the first line, the first pointer (thecar) indicates that the element is stored
at address 8022 while the second element (thecdr) tells us that the pointers for the next ele-

12 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

ment are to be found at 1273. At 1273, the pointers indicates that the element is stored at
9644 while the pointers for the next element are to be found at 1272.

Following this process through, we eventually end up at 1274 which says that the fifth
element is stored at 9640. The 0, signifying that there is no more linking information, indi-
cates that this is the end of the list (nil).

There are two things to note about this process:

1. The order of the elements in a list is determined by pointers and not by the
positions where they are stored in memory.

2. The pointers are stored in a different area of memory from the elements
themselves.

For most of this section, it is not necessary to go into such detail and we will therefore
use pictorial “box-and-arrow” representations for the examples. The “box-and-arrow” rep-
resentation of the above example list is as follows:

Each double box represents a pair of pointers. The vertical arrows show the pointers to
the elements, while the horizontal arrows represent the linking pointers to the next ele-
ments. The diagonal bar in the right-hand box signifies the end of the list; i.e. there is no
pointer. From our example, this diagram is incomplete as it does not show the name of the
list. The next figure shows how the name is directed to its value:

THIS IS AN ORDINARY LIST

ALLEGRO CL for Windows: Common Lisp Introduction 12 - 3

List storage

Any list structure can be demonstrated with this notation. Assuming that we have
another list namedanother-list which has the value((a few) (more
elements)) , we can see from the next diagram that the first pointers direct us to another
pair of pointers which point to the actual elements:

As long as the memory is not full, there are always addresses set aside to store pointers.
These are known collectively as thefree-storage-list. The first pointer at each of these
addresses indicates that these pointers have not been used, while the second points to the

THIS IS AN ORDINARY LIST

A-LIST

A FEW MORE ELEMENTS

ANOTHER-LIST

12 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

next unused address. In this way, all these unused addresses are linked together in a single
list:

12.2 How lists are modified

We can now look at the way functions affect memory structures. Some of these functions
have been demonstrated in earlier chapters; the others are introduced here for the first time.

cons adds top-level elements to the front of a list.

Let us look at an example:

(setf insects ’(beetle termite))

The listinsects now has the value(beetle termite) :

If we now do:

(setf insects (cons ’wasp insects))

FREE-STORAGE-LIST

FREE-STORAGE-LISTINSECTS

BEETLE TERMITE

ALLEGRO CL for Windows: Common Lisp Introduction 12 - 5

List storage

thecons takes the first address from the free-storage-list and uses it to point to the symbol
wasp. The second of the pair of pointers points to the address of the first element in the list
insects . insects is modified to point towasp’s pointers, while free-storage-list is in
turn modified to point to the next unused address:

The diagram of these modifications can be simplified thus:

It should be noted that in special circumstancescons can have two symbols for its argu-
ments. In this instance, each symbol uses only one of the pointers. For example,(cons
’a ’b) is shown thus:

FREE-STORAGE-LISTINSECTS

BEETLE TERMITE WASP

FREE-STORAGE-LISTINSECTS

WASP BEETLE TERMITE

12 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

 This structure is printed as (A . B) which is known as a dotted pair.

append creates a new list by merging the elements in its arguments.

Assuming thatabc has the value(a b c) anddef has the value(d e f) , these
can be joined to produceabcdef . However, it does not affect the original lists but makes
a copy of the first list with the final pointer modified to point to the next list. This copy uses
addresses from free-storage-list:

(setf abcdef (append abc def))
→ (A B C D E F)

A B

ALLEGRO CL for Windows: Common Lisp Introduction 12 - 7

List storage

rplaca expects two arguments: the first must be a list but the sec-
ond may be a symbol or a list. It replaces the first element of
the list with the second argument. To do this, it changes the
first pointer in the first argument to point to the new element.
rplaca is mnemonic for ‘replace CAR’.

DEFABC

A B C FED

INSECTS

WASP BEETLE TERMITE RED ANT

12 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

(rplaca insects ’(red ant))
→ ((RED ANT) BEETLE TERMITE)

rplacd expects two arguments: the first must be a list but the sec-
ond may be a symbol or a list. It replaces the rest of the
first argument with the second argument. rplacd is mne-
monic for ‘replace CDR’.

Assuming the listcomputer-fact has the value(computers are useful) :

(rplacd computer-fact ’(can be very expensive))
→ (COMPUTERS CAN BE VERY EXPENSIVE)

nconc joins lists together. It expects two or more lists as its argu-
ments.

Assuming that ABC has the value (A B C) and DEF has the value (D E F), these can be
joined to produce ABCDEF.

(setf abcdef (nconc abc def))
→ (A B C D E F)

The last list, in this case DEF, remains intact.

remove expects two arguments; the first must be a symbol and the
second a list. It copies the list and removes each top-level
occurrence of the symbol. It does not affect the original list.

Assuming thatvotes has the value(yes yes no no yes no) :

(remove ’yes votes) → (NO NO NO)

delete is the destructive version of remove . It does destroy the
original list and should therefore be used with caution.

When modifying lists with the above functions, two things should be borne in mind:

1. nconc , rplaca , rplacd anddelete operate on the original lists and
are therefore very efficient, although destructive.

2. append and cons are much safer, but they are not as efficient since they
use up addresses in thefree-storage-list .

ALLEGRO CL for Windows: Common Lisp Introduction 12 - 9

List storage

12.3 Garbage collection

Obviously, continued use of functions such asappend andcons could result in all the
free space being used up, but you do not have to worry about this as it is taken care of auto-
matically. Unlike many other languages, Lisp actually monitors the free-storage-list and, as
addresses become used up, it triggers a process known as garbage collection. This process
reclaims these addresses once they are no longer being used. When the garbage collector is
in action you will see an indicator appear on the screen. The indicator will change shape to
reflect different operations. It is also possible for you to trigger a garbage collection by typ-
ing (gc) , although this should not be necessary at this level.

12.4 equal, eql and =

As well asequal and = which we met earlier, there is a third predicate available for testing
equality:eql . eql is not the same asequal , as we will see. First of all, let us define three
lists and see how they are stored in memory:

(setf fruit-one ’(apple orange pear))
→ (APPLE ORANGE PEAR)
(setf fruit-two ’(apple orange pear))
→ (APPLE ORANGE PEAR)
(setf fruit-three fruit-two)
→ (APPLE ORANGE PEAR)

Although these appear to be the same, when we look at how they are stored, we see that
the first form creates three pairs of pointers which are used to find the value offruit-
one , while the second form creates a different set of pointers to point to the value of
fruit-two . Even though these have the same value, they are assumed to be different
because they were defined separately. The third form usesfruit-two as its value and so
the same three pairs of pointers are used to find the value offruit-three .

equal does not consider the address pointers when looking for equality and therefore
assumes that these three lists are equal because they have the same value.

eql , on the other hand, is more precise: it only considers objects to be the same if they
share the same pointers. Toeql , fruit-two and fruit-three are equal, whereas

12 - 10 ALLEGRO CL for Windows: Common Lisp Introduction

fruit-one is not.eql does not examine the values and, as a result, is much faster, espe-
cially if used with very large lists.

Care must be taken when operating on lists that areeql , as any changes affect them all.
For example, removing any element fromfruit-two also affectsfruit-three ,
which could be an unexpected side effect.

Where does the predicate= fit in? Obviously, this is the best format for mathematical
testing although it is possible to usedequal or eql . However,= only operates on num-
bers and will generate an error if its arguments are not all numbers. Also, it converts num-
bers to the same type before testing the values in the same way asequal . equal does no
conversion and considers numbers of different types to be unequal even if they have the
same numerical value:

(equal 1 1.0) → NIL
(= 1 1.0) → T

List searching functions (e.g.member andsubst) useeql for testing equality. If in a
certain situation the use ofequal or = would be preferable, it is possible to specify the
equality test for a particular call. Thus:

(member ’an-element any-list :test #’equal)

In this example,equal is used for equality testing during evaluation of this form. As
soon as evaluation is complete, the default predicate (eql) is restored.

This principle can be applied to other searching functions. Further details can be found
under the headingsLists andSequences in Allegro CL Online Help.

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 1

C
LO

S

Chapter 13 An introduction to
CLOS

In this chapter, we will give a brief introduction to CLOS, the Common Lisp Object system.
We will develop an extended example, showing how to use CLOS to construct a (toy)
object oriented database for tracking inventory in a general store. The focus will be on the
two fundamental notions that extend Common Lisp into CLOS: theclass and thegeneric
function.

13.1 Generic functions

Generic functions are functions which behave differently depending on the type and iden-
tity of the arguments which are passed to them. This is, of course, not a very strong state-
ment, since most functions will have different side effects and return values, depending on
whether they are passed the number 2 or the list (1 2 3 4). Generic functions, however, pro-
vide a way of codifying these different behaviors without writing code which is a mass of
cond , case andtypecase forms. Suppose, for the sake of a rather foolish example, we
want to write a function which takes one argument,x , and returns(car x) if x is a list
and returnsx otherwise. Without generic functions, we would have to do something like
this:

(defun stuff (x) (if (listp x) (car x) x))

So far so good. But say we had other special cases, say ifx happened to be a lexical
closure, and yet another if it was a symbol. We would have to (a) have access to the source
code forstuff and (b) be able to hack it apart and reconstruct it with enoughcond and

13 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

case (or related) forms to make sure it had the desired behavior. A source code manage-
ment and debugging nightmare would ensue after a very small number of such iterations.

The generic function approach to the same problem is simpler to write and results in less
complex, more modular code. The above functionstuff would be rewritten as follows:

(defgeneric clos-stuff (x))
(defmethod clos-stuff ((x list)) (car x))
(defmethod clos-stuff (x) x)

The first form announces a new generic function, calledclos-stuff , which has a
lambda list(x) . The next two forms describe the behavior of this function in two cases, if
the argumentx is a list, and if it is not. These two possible behaviors, calledmethods, are
"specialized" versions of the generic function in that they are applied only in specific situ-
ations. The work of deciding what case we are in, which was done explicitly in theif state-
ment in stuff , is done implicitly using the generic function's built-in discrimination
between different types of arguments.

Why is this an advance? Well, suppose we want to add another possibility: ifx is a sym-
bol, return its symbol-function. We don't need to hack at the code forclos-stuff , we
don't even need to see it, all we need to know is the lambda list and then we can do the fol-
lowing:

(defmethod clos-stuff ((x symbol)) (symbol-function x))

We have simply added a method to the generic functionclos-stuff to cover the case
when the argument is a symbol.

This is admittedly a foolish example, but the power of the machinery is evident.

13.2 Classes

If all that we could do with generic functions is to distinguish between symbols and lists,
they would not be very useful. The power of CLOS is that it allows the programmer to
define entirely new classes of Lisp objects which a generic function can distinguish from
one another. If, for instance, we wanted to build a Lisp system capable of drawing graphics
on a screen or writing the corresponding images into a PostScript file, we could define a
class of screens and a class of PostScript files and define adraw generic function which

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 3

C
LO

S

would have methods for each of the different classes. If we later decided to allow bitmap
files rather than PostScript files, we would simply define the appropriate classes and meth-
ods.

Let us give an example of this, continuing ourclos-stuff example. (We will be in
a position to construct a more sensible example shortly.) We first define a new class named
bell and then we add a method specifying howclos-stuff should act on members of
the classbell :

(defclass bell () ())
(defmethod clos-stuff ((x bell)) "Ding dong.")

The syntax ofdefmethod now becomes clearer: thecadr of each element of the spe-
cialized lambda list (bell is thecadr of (x bell)) is the name of a class. In fact,
list , symbol and t are names of CLOS classes which correspond to Common Lisp
types, but any CLOS class will do. Hence,

(clos-stuff (make-instance 'bell)) → "Ding dong."

A class is essentially a collection of Lisp objects that have something in common. As
we have seen, one thing they have in common is the way in which a generic function will
treat them. Classes can be used to dictate that a generic function will always behave a par-
ticular way when presented with a particular kind of object.

Two concepts which give classes power areslots andinheritance. A slot in a class is just
like a slot in a structure: it is a named spot where information can be stored. Inheritance
allows the programmer to make incremental changes, by saying that one class is similar to
another or includes structure and behavior from another. We will explore inheritance and
slots in more detail in the next two sections.

13.3 Slots and a better example

It is time for a more sophisticated example to give some concreteness to what we have been
discussing. Suppose we are trying to track inventory at a general store. There will be all
kinds of things to keep track of: books, shaving cream, food, etc. So let us define a class to
take care of all of these, calledmerchandise .

13 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

Each instance of the classmerchandise will correspond to a particular kind of thing
our store sells. So there will be an instance for Three Pronged Electric Widgets, one for cop-
ies of Murder on the Orient Express (the book) and another forMurder on the Orient
Express (the video). Each such instance will have several properties: an identifying name,
the quantity in stock, the cost at which they can be acquired, and the price at which they are
sold.

(defclass merchandise () (name cost price quantity))

You create an instance of a class withmake-instance . So, if we now evaluate

(setq item (make-instance 'merchandise))

we will be given a fresh instance of this class. What are the values for the various slots we
have defined? Since no value was given, these slots are unbound, just like an uninitialized
variable. We can usesetf to assign values to the slots:

(setf (slot-value item 'name) "Three Pronged Widgets")

and so on. But this gets tedious. The easier (and less error-prone) technique for accomplish-
ing this is to define the class in such a way that initialization of the various slots is possible
at the time that an instance is created:

(defclass merchandise ()
 ((name :accessor name :initarg :name)

(price :initarg :price :accessor price)
(cost :initarg :cost :accessor cost)
(quantity :initarg quantity :initform 0 :accessor quantity)))

This form defines the classmerchandise and specifies the four slots of the class:
name, price , cost , andquantity , just as was done with the simplerdefclass form
above. But now, we have further definedinitargs (initialization arguments) andaccessors
for each slot and aninitform for thequantity slot. The:initarg value names the key-
word argument that can be used in amake-instance form to specify the slot value for
an instance of the merchandise class. The:accessor names the function that can be used
to access the slot value. The:initform specifies the form to be evaluated to get the value
of a slot if no value is specified in themake-instance form.

We can now construct an instance ofmerchandise using initargs:

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 5

C
LO

S

(setq item (make-instance 'merchandise
:name "Three Pronged Widgets"
:price 5.69
:cost 1.39))

This time item comes equipped with a name, a price and a cost, all specified in the
make-instance form. We can access these slot values easily enough usingslot-
value :

(slot-value item 'name) → "Three Pronged Widgets"

or we can use the accessors defined in thedefclass form above:

(name item) → "Three Pronged Widgets"

The:initarg :name part of thedefclass form instructs CLOS that:name is to
be used as a keyword to indicate the name of an instance ofmerchandise . The
:accessor name part instructs CLOS to define a (generic) function calledname, which
can be used to return the value of the name slot of an instance. We can also use the accessor
andsetf to change a slot value:

(setf (name item) "Two Handled Pitchforks")
→ "Two Handled Pitchforks"

What aboutquantity ? We didn't specify a value for this slot yet...

(quantity item) → 0

The:initform 0 part of thedefclass form instructs CLOS that, in the absence of
an explicit:quantity in a (make-instance ’merchandise [...]) form, it
should construct an instance withquantity set to 0.

Now let’s add some bookkeeping functions to help us manage our inventory.

(defgeneric sell (item))
(defgeneric buy (item qty))
(defvar *cash-on-hand* 1000)

(defmethod sell ((item merchandise))
 (if (< (quantity item) 1)

 (error "~&~S is sold out. Sorry.~%" (name item))

13 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

(progn
 (decf (quantity item))

(incf *cash-on-hand* (price item)) item)))

(defmethod buy ((item merchandise) qty)
 (decf *cash-on-hand* (* qty (cost item)))
 (incf (quantity item) qty) item)

A few points should be made. As before, themerchandise in the lambda list of these
two methods is instructing CLOS that these methods are to be used when item is an instance
of the classmerchandise . Notice thatqty does not have any such "specialization"
attached to it: any class ofqty will match this method. In reality, one would always specify
a number forqty or else an error would be signaled later (when we try to multiply it by
the cost of the item) but CLOS need not be told everything, just enough so it can choose
which method is appropriate in a situation.

We can now buy and sell some items:

(buy item 5)
(sell item)
(sell item)

and we will be left with three pitchforks and $1004.43.

13.4 Class inheritance

So far it may be hard to see what the big deal is. Everything we have done could have been
accomplished with a lot less fanfare usingdefstruct and some ordinary (non-generic)
functions. Now we will begin to see the power of CLOS however, usingclass inheritance.

Merchandise itself falls naturally into different classes: food, books, sundries... From
the point of view of our inventory control scheme, one natural division is between the tax-
able and the nontaxable. A taxable item is just like a nontaxable one except that the store
owner is responsible for collecting a sales tax on the item and paying it over to the state. So
let’s define a class of taxable merchandise:

(defclass taxable-merchandise (merchandise) ())

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 7

C
LO

S

This class inherits from the classmerchandise , meaning that it has all the same slots
(name, quantity, etc.) and, furthermore, that every method that applies tomerchandise
can also apply totaxable-merchandise . Thus, say you try to apply a particular
generic function, say the generic functionsell defined above, to some instance oftax-
able-merchandise . Even though no method forsell for an argument of classtax-
able-merchandise has been defined, CLOS checks to see if there is a method for any
class thattaxable-merchandise inherits from (i.e. for anysuperclass of taxable-
merchandise). Since there is a method formerchandise , that method is applied.

So taxable-merchandise is a subclass ofmerchandise and inherits all of its
slots and methods. This is almost what we want, but not quite. Every time we sell some-
thing taxable, we must collect a little extra and we also incur a liability with the state. What
we need is a different method forsell for taxable-merchandise .

(defconstant *sales-tax-rate* .08)
(defvar *sales-tax-owed* 0)
(defmethod sell ((item taxable-merchandise))

 (if (< (quantity item) 1)
(error "~&~S is sold out. Sorry.~%" (name item))
(progn

(decf (quantity item))
(incf *cash-on-hand* (price item))
(incf *cash-on-hand* (* *sales-tax-rate* (price item)))
(incf *sales-tax-owed*

(* *sales-tax-rate* (price item))) item)))

Now we will keep track of what we owe the state and make sure to collect the right
amount from each consumer. When we callsell on something taxable (i.e. an instance of
the classtaxable-merchandise), it will use the method just defined instead of the one
inherited frommerchandise . On the other hand,buy will continue to find the inherited
method, since we haven't defined a new one. The point is that when you call a generic func-
tion on some Lisp object, CLOS first checks to see which methods could apply, either
directly or by inheritance from some superclass of the object. It then chooses whichever
method is most closely designed for the particular object at hand, by choosing a method
that was defined for its class if possible. (If that is not possible and there are several possi-
bilities, it chooses the "most specific" possibility.) So a taxable item will use thetax-
able-merchandise method forsell and themerchandise method for buy.

13 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

Let us briefly return to the first example in this section, where we defined clos-stuff to
behave differently on lists and non-lists. We provided the following definitions:

(defgeneric clos-stuff (x))
(defmethod clos-stuff ((x list)) (car x))
(defmethod clos-stuff (x) x)

And then we said: ‘The first form announces a new generic function, calledclos-
stuff , which has a lambda list(x) . The next two forms describe the behavior of this
function in two cases, if the argumentx is a list, and if it is not.’ It is easy to see how the
first defmethod defines whatclos-stuff does to a list argument sincelist appears
right in the definition, but how does the seconddefmethod say what should happen on
non-lists? It seems to be saying what to do for any argument, not just non-lists. The point
is that CLOS checks all defined methods and picks the one that most closely matches the
object of interest. Ifclos-stuff is passed a list, CLOS finds the method specialized to
lists (the firstdefmethod form). If clos-stuff is passed a non-list, the method spe-
cialized to lists does not apply so CLOS picks the only other method (the second defmethod
form).

13.5 Method combination

There is something unaesthetic about thesell method definition specialized totax-
able-merchandise : it is almost word for word the same as the definition of the method
for merchandise . This kind of repetition of code is inefficient and makes it hard to track
errors and changes. Indeed, it is exactly what object oriented programming is meant to cir-
cumvent. CLOS has a way around these problems calledmethod combination.

Let's look more carefully at thesell method fortaxable-merchandise . Basi-
cally it is the same as that formerchandise , except that it does two more things after-
wards: (1) it collects more money and (2) it keeps track of the increased tax liability. So it
would be nice to be able to say (in effect): do everything as for merchandise and then do
these two extra things. CLOS supports such a specification by allowing you to define meth-
ods that work in conjunction with other methods. These add-on methods can be applied
before (a:before method), after (an:after method) or around (and:around
method) the already defined methods. Since we want two things done after what is done to
any merchandise, we define an:after method.

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 9

C
LO

S

First, let's get rid of the last method we defined.

(remove-method (symbol-function 'sell)
(find-method (symbol-function 'sell) nil

(list (find-class 'taxable-merchandise))))

(We won't dwell on this form, suffice it to say that it removes thesell method special-
ized fortaxable-merchandise that we just defined.)

Now, we will define an:after method forsell on taxable-merchandise :

(defmethod sell :after ((item taxable-merchandise))
(incf *cash-on-hand* (* *sales-tax-rate* (price item)))
(incf *sales-tax-owed* (* *sales-tax-rate* (price item))))

Now what happens when we applysell to an instance oftaxable-merchan-
dise ? CLOS searches through the methods that might apply totaxable-merchan-
dise , either directly or by inheritance, and finds the two we defined. One, the:after
method, is fortaxable-merchandise and one is the inherited one formerchan-
dise . Naively, one might think that only the former should apply, but it is an:after
method, and can't be applied on its own, it has to follow something. So CLOS first applies
the merchandise method and then thetaxable-merchandise :after method,
which is exactly what we want to happen.

(setq booze
 (make-instance 'taxable-merchandise

:name "Wild Grandad"
:price 25.0 :cost 12.0))

(buy booze 5)
(sell booze)

will increment our tax liability just as it should.

13.6 Other method types

As we said, there are:before methods as well as:after methods. The methods we
initially defined, which weren't classified as:before or :after , are calledprimary
methods. A :before or :after method can only be defined if there is already a primary

13 - 10 ALLEGRO CL for Windows: Common Lisp Introduction

method defined which can be used in conjunction with it. (If you try to define a:before
method without a primary method existing, a "method combination error" will be sig-
nalled.)

There are also:around methods, which are called both before and after other meth-
ods. How does this work? Suppose we, as proprietors of our store, decide to have a book
sale, discounting our books by 20%. Suppose we had made this easy in advance by simply
defining the class of books, which are taxable

(defclass book (taxable-merchandise) ())

and made sure that whenever we introduced a new book to our stock, it was entered as an
instance of thebook class.

(setq benji (make-instance 'book
:name "The Tale of Benji"
:price 35.00
:cost 25.00))

To implement our discount, we could just write a newsell method for the classbook ,
but this is unaesthetic and error-prone. Plus, we have to know exactly what is going on in
the method, essentially meaning that we need access to the source code forsell . Instead,
notice that all that is changing is the price of a book: let us define an:around method for
price . Remember,price is not a blind function that just returns the price slot of a piece
of merchandise: it is a generic function whose primary method is to return that slot. So we
can combine it with:before , :after or :around methods, redefine a new primary
method, whatever we like. In this case

(defmethod price :around ((a-book book))
(* (call-next-method) 0.8))

(price benji) → 28.0

How does this work? The idea of an:around method is that it will be invoked before
any of the other defined methods. Then, at some point in its execution, it can pass control
to one of the other methods. It does this by invokingcall-next-method , which
invokes the "next" applicable method. The next method could be another:around
method (for a more specific class) a:before method, or, as in our case, the primary
method for the particular generic function. So(call-next-method) will return the
slot-value of price forbenji (35.00), and then this value will be multiplied by 0.8 and

ALLEGRO CL for Windows: Common Lisp Introduction 13 - 11

C
LO

S

returned. In this fashion, every book in the store will have its price reduced by 20%. Of
course, when the sale is over, this method can be removed and books return to full price.

13.7 Shared slots and initialize-instance

There is a problem with using our work so far to track inventory: it doesn't really keep a list
of what is in stock. One possible solution to this is to make a special variable (say
inventory) to hold a list of all instances of merchandise. Another way, however, is
to useshared slots. A shared slot is one whose value is common over all instances of a class.
In this case, we would define a slot calledinventory such that(slot-value item
'inventory) returned a list of all items, no matter what item was passed as an argument.

(defclass merchandise ()
 ((inventory :accessor inventory :initform nil

 :allocation :class)
 (name :accessor name :initarg :name)
 (price :initarg :price :accessor price)
 (cost :initarg :cost :accessor cost)
 (quantity :initarg quantity :initform 0 :accessor quantity)))

The only unfamiliar piece of this definition is the:allocation :class in the
description of theinventory slot. This declares that inventory will be a shared slot.

What we want now is that every new instance ofmerchandise should be added to
the inventory list. To do this, we use the built in generic functioninitialize-
instance , whose mission is to initialize a new instance of a class. In particular, we can
add an:after method toinitialize-instance which simply pushes the new
instance onto the beginning of the inventory list:

(defmethod initialize-instance :after
 ((item merchandise) &rest initargs)

(push item (inventory item)))

Now, if we construct some new instances of merchandise:

(setq corn-flakes
(make-instance 'merchandise :name "corn-flakes"

:cost 1.00 :price 2.49))

13 - 12 ALLEGRO CL for Windows: Common Lisp Introduction

(setq shaving-cream
(make-instance 'taxable-merchandise :name "shaving cream"

:cost 2.59 :price 3.49))

Each of these will have been added to the inventory list:

(inventory corn-flakes)
→ (#<TAXABLE-MERCHANDISE #x3763C8> #<MERCHANDISE #x376BDC>)

(Of course the old items we constructed aren't on the list because they were initialized
before the inventory list was a slot.)

13.8 Beyond scratching the surface...

This introduction was meant only to give the flavor of CLOS. We have barely begun to
describe generic functions, classes and methods, and have not even mentioned metaobjects,
defining your own method combination types, or any of a host of other useful and interest-
ing topics. These topics are explored in other, more exhaustive, treatments. And as always,
the best way to understand how CLOS is used is to look at the source code for a well-written
CLOS program.

ALLEGRO CL for Windows: Common Lisp Introduction 14 - 1

E
rrors

Chapter 14 Errors

Any errors which occur during evaluation are signalled by a dialog box giving details of the
error and requesting that some action be taken. Usually you are given the choice of aborting
the evaluation or entering the Debugger, but it is also possible to continue in the case of
some less serious errors. At this stage, you may find it confusing to enter the Debugger but
we recommend that you try it; you can do no harm. A selection of typical error messages
follows. These are accompanied by the code used to generate them, and a brief explanation
of the problem. When the dialog box is cleared from the screen, the text of the message is
printed into the Toploop window. The Debugger is described in chapter 6 ofProgramming
Tools.

14.1 Typical error messages

Restarts dialogs
When an error (or any break in a program) occurs, a Restarts dialog is displayed. (In previ-
ous versions of Allegro CL for Windows, an simple error dialog was displayed). A Restarts
dialog (several are illustrated on the following pages) displays the error message, identifies
the condition signaled (unless it issimple-error), lists available restarts and has sev-
eral button. The button includeInvoke Selected Restart, Enter Debugger, andAbort .

Abort means clear the error and the stack and return to the Top Level. Any ongoing com-
putation is canceled.

Enter Debugger means bring up a Backtrace window showing the state of the stack.

Invoke Selected Restart means take the action called for by the selected restart. Among
the restarts usually available are Enter Debugger and Return to Top Level, which corre-
spond to the two buttons just described. Continuable errors usually have a restart to con-
tinue computation, perhaps after providing additional information.

14 - 2 ALLEGRO CL for Windows: Common Lisp Introduction

Lisp provides too many error messages for us to be able to reproduce every one here. We
have therefore provided a selection of the ones you are most likely to encounter as you
begin to try things out.

1. You can reproduce the error message below by typing:

a

In this instance, the variable a had not been assigned a value prior to this request to view
its value.

2. The following message was caused by typing:

(jim 1 2)

Remember, Lisp always regards the first item inside the parentheses as a function call
unless told otherwise.

ALLEGRO CL for Windows: Common Lisp Introduction 14 - 3

E
rrors

3. The functioncons expects two arguments: a symbol and a list. This error
can be reproduced by typing:

(cons ’a ’b ’(fred))

4. Consider this version ofmy-log2 :

(defun my-log2 (num &optional base)
 (if (not base)

 (= base 10))
(/ (log num) (log base)))

Trying to make the base equal to 10 with(= base 10) instead of(setf base
10) caused this problem. If you definemy-log2 as above and try to call it with
argument 2, the following message appears:

14 - 4 ALLEGRO CL for Windows: Common Lisp Introduction

5. Here is another version ofmy-log2 :

(defun my-log2 num &optional base
 (if (not base)
 (setf base 10))
 (/ (log num) (log base)))

This error appeared because there are no parentheses round the argument list.

6. The message below resulted from this version ofsum-of-squares2 :

(defun sum-of-squares2 (&rest nums)
 (let (result 0)

 (for i in nums
 do
 (setf result (+ (* i i) result)))
result))

ALLEGRO CL for Windows: Common Lisp Introduction 14 - 5

E
rrors

Notice that the argument tolet should be enclosed by two sets of parentheses.

14.2 User-defined error messages

You may also signal errors from your programs using theerror function. The function
should be called with something like:

(error "division by zero")

A more elegant version of the functionmy-rem1 would be:

(defun my-rem2 (numerator denominator)
 (cond ((< numerator 1) 0)

((< denominator 1)
(error "division by zero"))

((< numerator denominator) numerator)
(t (my-rem2 (- numerator denominator)

denominator))))
→ MY-REM2

 If you try outmy-rem2 with the arguments 2 and 0, the following error message will
appear:

14 - 6 ALLEGRO CL for Windows: Common Lisp Introduction

14.3 ‘Attempt to set non-special free variable’ warning

This is a warning that you may see from time to time. Suppose the filefoo.cl contains the
two forms:

(in-package :user)
(setq foo 10)

And assume this is the first time the symbolfoo has been used. When you compile or
load the file, Lisp will print the following warning:

;;;; Warning: Compilation warning: Attempt to
set non-special free variable FOO. So will
treat as special.

So what is going on? A free variable is one that is not bound (e.g. in alet form) or an
argument in a function call. Free variables should first be defined withdefvar or def-
parameter , as follows:

(defvar foo 10)

or

(defparameter foo 10)

Either of these forms definesfoo as a special variable. Now, forms like

(setq foo 20)

will not cause the warning.

These warnings are quite useful when compiling files, since they may indicate a coding
error or a typo. They are annoying at the top-level (where you may entersetq forms on
the fly to test or debug code). For that reason, the warnings have been turned off when typ-
ing to the top level, but maintained when loading or compiling files. (All files are compiled
before loading, so the only difference between loading and compiling is whether the file is
loaded.)

ALLEGRO CL for Windows: Common Lisp Introduction 14 - 7

E
rrors

If you see these warnings and wish to get rid of them, put the appropriatedefvar or
defparameter forms in the file. (You can turn off all compiler warnings with the dialog
displayed by choosing Compiler and CLOS in the Preferences menu.)

Differences between defvar and defparameter
There is an important and useful difference betweendefvar anddefparameter . Each
takes a value argument, and the firstdefvar or defparameter form sets the variable
to that value. However, subsequentdefvar forms do not change the value while subse-
quentdefparameter forms do. Thus:

(defvar foo 10)
foo → 10
defvar foo 20)
foo → 10

(defparameter bar 10)
bar → 10
(defparameter bar 20)
bar → 20

This can be a very useful distinction. You may have several files where variables are
defined. Usingdefvar anddefparameter as appropriate, you can arrange that the first
definition (in the first file loaded) or the last definition (in the last file loaded) actually sets
the value after all files are loaded.

14 - 8 ALLEGRO CL for Windows: Common Lisp Introduction

[This page intentionally left blank.]

ALLEGRO CL for Windows: Common Lisp Introduction A - 1

G
lossary

Appendix A Glossary

Glossary of terms used

Access Function

■ A function which directly accesses data structures to build, modify and find
items. Access functions are called by other functions to manipulate the data. If the
structure of the data is modified, only the access functions should need to be
changed.

 Array

■ A dimensioned data structure of cells into which information is stored.

Assignment

■ The process of allocating a value to a symbol or list.

Association List

■ A list which contains a number of sublists, each of which has a key as the first
element.

Binding

■ The process of assigning a particular value to a variable within a specific section
of code.

Call

■ A request to Lisp that a function be invoked.

Clause

■ A list of forms, one to test and the other to be done if the test is successful, fol-
lowing cond .

A - 2 ALLEGRO CL for Windows: Common Lisp Introduction

Data Abstraction

■ The concept of producing software which is independent of the data format. The
object is to create as few functions as possible to access the data directly and to make
all other functions call these. In this way, only these access functions need to be
changed if the structure of the data changes.

Dotted Pair

■ Special notation to indicate that the second argument to a CONS was not a list.

Dynamic Scoping

■ Means that the value accessed by a variable is that most recently bound during
the execution of the program, c.f. lexical scoping.

Element

■ An item in a list. This may be a symbol, a number, or another list.

Evaluation

■ The process by which Lisp assigns a value to an expression.

Filtering

■ The process of examining lists and deciding whether or not to discard elements.

Form

■ An expression which is evaluated to return a value.

Free

■ The term used to describe a variable which is used within a function without
establishing a new binding.

Function

■ A section of code which expects arguments to be passed to it. These are then
manipulated to return a value.

Garbage Collection

■ A process, normally initiated automatically by Lisp, to retrieve free space which
had been used as work space by certain functions.

ALLEGRO CL for Windows: Common Lisp Introduction A - 3

G
lossary

Iteration

■ The repeated execution of a particular section of code.

Key

■ The first element of a sublist in an association list sublist, which is used to find
that sublist.

Lambda Expression

■ A 'temporary' function which is usually called from inside another function. It
does not have a name and is 'discarded' once it has been evaluated to return a value.

Lexical Scoping

■ Means that the value accessed by a variable is that governed by the nearest tex-
tually enclosing binding in the source code of the program, c.f. dynamic scoping.

List

■ A collection of elements enclosed in parentheses.

Literal Expression

■ An expression that is not to be evaluated.

Macro

■ A method of writing sections of code which are used repeatedly in a shorthand
form.

Macroexpansion

■ The process of converting a macro call into the actual form for evaluation.

Mapping

■ The application of a function separately to each of the elements in a list.

Multiple Escape Characters

■ Vertical bars which are placed round a symbol to allow certain special characters
to be included in it.

A - 4 ALLEGRO CL for Windows: Common Lisp Introduction

Multiple Values

■ Some Lisp functions may return more than one value as their result. In most sit-
uations, values other than the first are discarded, but special functions are available
to access those other values.

Numbers

■ Numerical values which fall into four categories: integers, floating-point num-
bers, ratios and complex numbers.

Predicates

■ Functions which perform tests to return one of two values:t (true) andnil
(false). (A predicate may be defined to return a non-nil value other thant when
that value may be useful.)

Property

■ An attribute consisting of a name and a value which can be assigned to a symbol.

Property List

■ A collection of items which are properties.

Property Name

■ The symbolic name of an attribute which is assigned as a property of an element.

Property Value

■ The value of an attribute assigned as a property of an element.

Recursion

■ A method of programming during which a function calls itself repeatedly to assist
in the solving of a problem

Scope

■ The range of code during which a particular value is accessed by a variable.

Side Effect

■ Something, other than the returning of a value, which may occur as a result of
evaluating an expression.

ALLEGRO CL for Windows: Common Lisp Introduction A - 5

G
lossary

Single Escape Character

■ A backslash (\) which is used to suppress a special character when printing.

Special Variable

■ A Lisp variable which uses dynamic scoping.

Symbol

■ One of the fundamental Lisp data types, an indivisible word-like object.

Textual Scope

■ The same as lexical scope.

Top-level Element

■ An object which is at the highest level of a list, i.e. it is not a list within that list.

Toploop

■ The process by which user interaction is handled by Lisp. It accepts input, eval-
uates it and prints the returned value.

Terms used in other texts

Atom

■ Any object other than a list ornil . 12 and'a are both atoms.

Data Constructor

■ An access function to build a data structure.

Data Mutator

■ An access function to modify the data within a structure.

Data Selector

■ An access function to find items within a data structure.

Embedded Function

■ A call to a function which appears inside another function.

A - 6 ALLEGRO CL for Windows: Common Lisp Introduction

Environment

■ A collection of bindings.

Functional Error

■ A bug which causes the code to do something different from what we want, with-
out necessarily producing an error message.

List Surgery

■ Applying functions to lists to modify their contents, such asappend , first ,
subst, etc.

Nested Expression

■ An expression within an expression, such as a list which is one element of a list.

Pretty-printing

■ A process by which line breaks and indentation are inserted into code to make it
more readable.

Primitive

■ A built-in Lisp function.

Procedure

■ In Winston & Horn, a function written by the user.

Sentinel Value

■ A value which is input to terminate a loop.

setq

■ A low-level function for updating variables. Other texts use it in place ofsetf .

(setf x y) ≡ (setq x y)

butsetq is less powerful thansetf in that it can only update variables.

Tail Recursive

■ A recursive function which produces a solution which is fully formed when it is
found and therefore does not need to be passed back through each level of recursion
for further computation.

ALLEGRO CL for Windows: Common Lisp Introduction I - 1

Index

Index

Symbols
#’ 10-1
#s syntax

structure reader syntax 9-9
,@ 11-3
< (ascending order function) 3-5
= 3-5, 12-10
= function, syntax and semantics of 3-5
> (descending order function) 3-4

A
abs 3-3
absolute value 3-3
access function 9-6, A-1
access functions 9-9
accessor 13-4
addition 3-1
after method 13-8
alist 9-1, A-1
and 7-3
append 4-5, 12-6
append function, syntax and semantics of 4-5
apply 10-2
aref 9-5
arguments

any number of 10-7
arithmetic functions 3-1
around method 13-8
array A-1
array entries

retrieving or modifying 9-5
array-rank-limit 9-5

I - 2 ALLEGRO CL for Windows: Common Lisp Introduction

arrays 9-5
making 9-5
zero-dimensional 9-5

assignment A-1
assoc 9-1
association list 9-1, A-1
associations

retrieving 9-1
atom A-5
attempt to set non-special free variable warning 14-6

B
backquote 11-2, 11-3
before method 13-8
binding 6-1, A-1
box-and-arrow 12-2

C
call A-1
car 4-1
carriage return 5-5
carriage return, how to output a 5-5
cdr 4-1
cdr function, syntax and semantics of 4-1
characters

printing special 5-4
special, examples of 5-4

class (in CLOS) 13-2
class inheritance 13-6
clause A-1
CLOS 13-1

accessors 13-4
class 13-2
class inheritance 13-6
generic function 13-2
inheritance 13-3
initargs 13-4
initform 13-4
method combination 13-8

ALLEGRO CL for Windows: Common Lisp Introduction I - 3

Index

CLOS (cont.)
methods 13-2
primary method 13-9
shared slots 13-11
slots 13-3
superclass 13-7

comma
and backquote 11-2

comma-at 11-3
comments, inserting into a function definition 2-5
Common Lisp Object System 13-1
compiler warnings

attempt to set non-special free variable 14-6
cond 7-6
conditional testing 7-3
conditionals 7-1
cons 4-4

box-and-arrow description 12-4
cons cells 12-1, 12-2
cons function, syntax and semantics of 2-3, 4-4
constructor A-5
conventions used in this manual 1-3

D
Data A-2
data

basic types (symbols, numbers, lists) 2-1
no distinction between Lisp data and Lisp programs 1-2

data abstraction 9-6, A-2
data and programs 1-2
data constructor A-5
data mutator A-5
data selector A-5
data structures 9-1
data type

defstruct 9-8
debugger 14-1
default values

specifying 10-6

I - 4 ALLEGRO CL for Windows: Common Lisp Introduction

defclass (example) 13-3
defgeneric (example) 13-2
defining macros 11-2
defmacro 11-2
defmethod (example) 13-2
defparameter

compared to defvar 14-7
defstruct 9-7

and typep 9-8
defun 2-4, 10-1
defvar

compared to defparameter 14-7
dynamic scoping 6-4

delete 12-8
descending order function, syntax and semantics of 3-4
destructiveness vs efficiency 12-8
discarding elements of a list 10-3
division 3-2
division by zero 14-5
do 8-3
documentation

online P-2
dotted pair 12-6, A-2
dynamic scoping 6-4, A-2

E
e 10-5
efficiency vs destructiveness 12-8
element A-2
embedded function A-5
environment A-6
eql 12-9
equal 12-9

function 7-2
equality 3-5, 12-9
error 14-5
error messages 14-1

user defined 14-5
error messages, samples 14-1

ALLEGRO CL for Windows: Common Lisp Introduction I - 5

Index

errors 14-1
escape character A-3, A-5
eval 5-3
evaluation A-2
evaluation of forms 5-3
even 3-5
evenp 3-5
evenp function, syntax and semantics of 3-5
expanding macros 11-2
exponential function, syntax and semantics of 3-2
expt function, syntax and semantics of 3-2

F
filtering 10-3, A-2
first 4-1
float 3-4
float function for converting integers into floats, syntax and semantics of 3-4
for 8-4
form A-2

definition of 2-1
free A-2
free variable 6-1

compiler warning when setting 14-6
free-storage-list 12-3
funcall 10-4
function 10-1, A-2

access A-1
defining a 2-3
using as an argument 10-4

function call
example 1-2
syntax of 1-2

functional error A-6

G
garbage collection 12-9, A-2
gc 12-9, A-2
generating symbols 11-4
generic functions (discussed) 13-1, 13-2

I - 6 ALLEGRO CL for Windows: Common Lisp Introduction

gensym 11-4
get 9-2

with setf 9-3

H
help

online P-2

I
if 7-3
if-then-else construct 7-3
inheritance (discussed) 13-3
initargs 13-4
initform 13-4
input 5-1

function to handle 5-2
how to make easier to read 1-3

Introducing 5-1
italics 1-3
iteration 8-1, A-3

J
joining lists 12-8

K
key A-3

L
lambda 10-1
lambda expression 10-1, A-3
last 4-3
let 6-1
lexical scoping 6-3, A-3
Lisp

derivation of name 1-1
versions 1-1

ALLEGRO CL for Windows: Common Lisp Introduction I - 7

Index

list 4-5
add an item to the front of a 2-3
adding to and removing from a 2-3
definition of 2-1
delete an item from a 2-3
function that substitutes one element of a list for another 4-4
function to add an item to the front of a 4-4
function to extract first element of a 4-1
function to extract last element of a 4-3
function to extract nth element of a 4-2
functions that combine one with another 4-4
modifying 12-4
storage 12-1
surgery A-6

list function, syntax and semantics of 4-5
list structure 12-3
listp

function 7-1
literal expression A-3
log 3-3, 10-5
logarithm 3-3
logical operators 7-3
loop 8-2

M
macroexpand-1 11-2
macroexpansion 11-1, A-3
macros 11-1, A-3

defining 11-2
expanding 11-2
vs functions 11-1

make-
structure constructor function 9-8

make-array 9-5
make-instance 13-4

example 13-4
making a list 4-5

I - 8 ALLEGRO CL for Windows: Common Lisp Introduction

mapcar 10-1
and functions of more than one argument 10-2
examples 10-2
simple version 10-5

mapping A-3
max 3-5
maximum 3-5
member 12-10

function 7-2
memory 12-3
memory management 12-9
method (discussed) 13-2
method combination 13-8
methods

after 13-8
around 13-8
before 13-8

min 3-5
minimum 3-5
minus 3-5
minusp 3-5
minusp function, syntax and semantics of 3-5
modifying lists 12-4
multiple escape characters A-3
multiple values A-4
multiplication 3-2
mutator A-5

N
nconc 12-8
negative, function to test if a number is 3-5
nested expression A-6
nth 4-2
null

function 7-2
number

types of 2-1

ALLEGRO CL for Windows: Common Lisp Introduction I - 9

Index

numberp
function 7-1

numbers A-4

O
object oriented programming (in CLOS) 13-1
odd 3-5
odd, function to test if a number is 3-5
oddp 3-5
online manual P-2
&optional 10-6
optional arguments 10-5

default values 10-6
or 7-3
order, descending, function, syntax and semantics of 3-4
output 5-1

function to perform 5-1
output a carriage return, how to 5-5

P
plist 9-2, A-4
pointers 12-1
predicates 3-4, A-4
pretty-printing A-6
primary method 13-9
primitive A-6
prin1 5-5
prin1 function, syntax and semantics of 5-5
princ 5-5
print 5-1

function to print without starting with a new line 5-5
without escape characters 5-5
without newlines 5-5

print a carriage return, how to 5-5
print function, syntax and semantics of 5-1
print special characters, how to 5-4
procedure A-6
progn 7-5

I - 10 ALLEGRO CL for Windows: Common Lisp Introduction

programs
are usually called "functions" in Lisp 1-2

programs and data 1-2
property 9-2, A-4

modifying 9-3
removing 9-4
retrieving 9-2, 9-4

property list 9-2, A-4
property value A-4
push 11-1

Q
quote 4-3
quote function, syntax and semantics of 4-3

R
read 5-1
read function, syntax and semantics of 5-2
recursion 8-1, 8-5, A-4

tail A-6
rem 3-4
rem function, syntax and semantics of 3-4
remainder 3-4
remainder function, syntax and semantics of 3-4
remove 12-8
remove function, syntax and semantics of 2-3
remove-if 10-3
remove-if-not 10-3
remove-method (example) 13-9
remprop 9-4
&rest 10-6
rest 4-1
return 8-4
round 3-3
round function, syntax and semantics of 3-3
rplaca 12-7
rplacd 12-8

ALLEGRO CL for Windows: Common Lisp Introduction I - 11

Index

S
scope 6-3, A-4
scoping

dynamic A-2
lexical 6-3, A-3

selector A-5
sentinel value A-6
setq A-6
shared slot 13-11
side effect A-4
single escape character A-5
slot (discussed) 13-3
slot-value (example) 13-5
special variable 6-4, A-5
specifying default values 10-6
sqrt 3-2
square root 3-2
storage of lists 12-1
structure 9-7
subst 4-4, 12-10
subst function, syntax and semantics of 4-4
subtraction 3-1
sum of squares 10-7
superclass 13-7
super-parenthesis 2-5
symbol A-5

conventions used in this manual 1-3
definition of 2-1
how to define a string as a 5-4

symbolp
function 7-1

symbol-plist 9-4

T
tail recursion A-6
temporary variable 6-1
terpri

print a carriage return 5-5

I - 12 ALLEGRO CL for Windows: Common Lisp Introduction

textual scoping 6-3, A-5
top-level element A-5
toploop 5-1, 5-3, 14-1, A-5
Toploop window

example 1-2
truncate 3-3
typep

and defstruct 9-8

U
unbound A-2
unbound variable 6-1
unless 7-5
user defined error messages 14-5
using functions as arguments 10-4

V
variable

compiler warning when setting a free variable 14-6
free 6-1
special A-5
temporary 6-1
unbound 6-1

W
warnings

attempt to set non-special free variable 14-6
when 7-5

Z
zero 3-6
zero-dimensioned array 9-5
zerop 3-6

Debugge

Allegro CL for
Windows

Interface Builder

version 3.0

October, 1995

Copyright and other notices:

This is revision 1 of this manual. This manual has Franz Inc. document number D-U-00-
PC0-12-51018-3-1.

Copyright 1994 by Franz Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means elec-
tronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademarks of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, Windows 95, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Interface Builder c - 1

Contents

1 Getting started with the Interface Builder
1.1 Introduction 1-1
1.2 Organization of this manual 1-2
1.3 Accessing the Interface Builder 1-2
1.4 Some general concepts 1-3
1.5 Things to note that you might not expect 1-3
1.6 Interface Builder Dialogs 1-4

1.6.1 The Builder Preferences Dialog 1-5
 The font buttons on the Preferences dialog 1-10

2 Tutorial
2.1 Tutorial 2-1

How to create a dialog window 2-1
The dialog menu: what it is and how to display it 2-2
How to create a widget 2-3
How to move a widget 2-4
Switching between edit mode and run mode 2-4
Other ways to switch between edit mode and run mode 2-5
The mouse cursor tells you the mode 2-5
Other ways to create a widget 2-5
The ‘sticky’ widget alignment feature 2-6
Using the widget menu 2-6
Using the editor dialogs 2-6
How to apply the widget editor to a widget 2-8
How to set widget event handlers 2-9
How to save user-written code for widget event handlers 2-10
How to save the auto-generated code for recreating edited windows 2-11
How to create and edit menus 2-12
How to make a window a top-level window (so menu bar appears) 2-14

c - 2 ALLEGRO CL for Windows: Interface Builder

Editing top-level windows 2-14
The window editor dialog 2-14
Code to generate our dialog 2-15

2.2 Managing the images used by picture widgets 2-19
2.3 A few useful functions 2-20

Getting an Object By Mousing On It 2-20
Customizing mouse behavior over objects in edit mode 2-21
Getting an object from its name 2-22

2.4 Editing a window that was not created with the builder 2-23

3 Menus and mouse actions
3.1 Right-Button Pop-Up Menus 3-1
3.2 The Widget Pop-up Menu 3-2
3.3 The Window Pop-up Menu 3-5
3.4 Other mouse actions 3-11

Index

ALLEGRO CL for Windows: Interface Builder 1 - 1

G
etting

S
tarted

Chapter 1 Getting started
with the Interface
Builder

1.1 Introduction

TheInterface Builder (or IB or Builder) allows you interactively to construct the graphical
user interface to your application. You use the mouse to create, position, and resize widgets
(dialog-items) as well as dialogs and other windows. Attributes of widgets and windows
are edited by using either pop-up menus or special dialogs that list all their modifiable
attributes. Once you have created a complete dialog with widgets or arbitrary window hier-
archy, the Interface Builder generates the source code needed to recreate it programmati-
cally and saves it to a standard Lisp source code file that you include in your application.

A variety of features allows quick interface creation. For example:

• Each of the standard Windows widgets can be created from a floating palette or
from a pop-up menu, and then moved or resized at any time.

• The event handler Lisp code associated with a particular widget, such as the
function that runs when the widget's value changes, can be located quickly from
the widget itself.

• Widgets can be easily aligned with each other. While moving a widget, it “snaps”
into alignment whenever its edges are nearly aligned with the same edges of other
widgets. Red alignment lines are drawn to show which widgets are lined up.

• Widgets can be cloned and/or dragged to other dialog windows.

• Individual attributes can be copied from one widget to another.

1 - 2 ALLEGRO CL for Windows: Interface Builder

• Groups of widgets can be moved, cloned, or deleted at once.

• The auto-generated source code can be edited by hand later if you wish, and the
dialog created from this edited code can still be further edited using the Interface
Builder.

• You can instantly switch any window between edit mode and run mode, allowing
frequent testing of your changes.

1.2 Organization of this manual

Documenting a mouse-based tool is always somewhat complicated, because users have
many choices and their actions rarely follow a set pattern (first do this, then that, then this
other etc.) What most people want to know is how to get started and then how to do specific
things. We have tried to organize the manual in that way. Getting started and some basic
concepts are described in this chapter. Chapter 2 has a long example with heading describ-
ing what is being done in each step of the example. We hope those headings will include
things you want to do. Chapter 3 describes specific mouse actions and specific menus.

1.3 Accessing the Interface Builder

The menu commands for the IB are grouped on the Builder menu.

The first three items allow you to create windows and switch between editing them and
testing them.

The rest of the items simply expose each of the Interface Builder's own dialog windows,
which you use to create your own window interface.

ALLEGRO CL for Windows: Interface Builder 1 - 3

G
etting

S
tarted

1.4 Some general concepts

• Run mode and edit mode. A dialog which is being constructed can be in run
mode or in edit mode. When it is in run mode, it is just a normal dialog, meaning
that mouse and keyboard actions have their usual programmatic effect. When it
is in edit mode, dialog items (widgets) are not sensitive to the mouse or the
keyboard in the usual way. Instead, the mouse and the keyboard are used to
modify the widget in some way. It is typical to switch between run and edit modes
while building a dialog, on order to test the features you have added to the dialog.

• The set-value-fn is important. A dialog must do something programmatic
(unless it is simply informative or decorative). When a user uses the mouse or
types to the keyboard over a dialog, what typically happens is that theset-
value-fn associated with the dialog item being operated on is run. It is that
function that does the work of effecting the action of the dialog. The default set-
value-fn istrue , which does nothing so you typically will want to define your
own.

• Widget and dialog-item mean the same thing. As we use the terms, they are
synonyms.

• The status bar is very important. The status bar is used extensively by the IB.
Information about the objects you are creating, about the contents of the IB
palette, about what the IB is doing, and about what you can or should do next are
all displayed in the status bar. Therefore, it is essential that the status bar be
present and visible. If the status bar is hidden, chooseStatus Bar from the Tools
menu to cause it to appear or press the F11 key. (The F11 key toggles the status
bar between visible and hidden. Because the status bar is always above most
windows and dialogs, the F11 key is quite useful when using the IB.)

1.5 Things to note that you might not expect

• Alt-Tab does not work when the mouse cursor is over a window being edited.
Normally you can press Alt-Tab to switch from Allegro CL to other Windows
applications. However, when the mouse is over a selected window that is in edit
mode (so that the mouse cursor is a cross), Alt-Tab has no effect. To use Alt-Tab,
first move the cursor out of the window being edited.

1 - 4 ALLEGRO CL for Windows: Interface Builder

• Only the left mouse button can be used to choose menu items. Even though the
right mouse button is used to pop-up menus in the Interface Builder, the right
button cannot be used to select items on the menus. You must first release the
right mouse button and then left-click on a menu item in order to choose it. To get
rid of the menu without selecting an item, left-click somewhere off the menu.

• Menu bars appear only on top-level windows. If you use the menu editor to add
a menubar to a window, you won't see the menu bar until you make the window
into a top-level one. A top-level window is a window whose location (the value
of thelocation argument toopen-stream) is *screen* .

• Some attributes require that a widget or window be recreated in order to
change that attribute. You may not notice when the Builder does this, but if you
have a global variable bound to a widget or window and then change one of these
attributes, your global variable will then be bound to a closed stream or other
bogus value.

• You should save code to generate the new interface to a file. Information on
saving code is given under the heading How to save the auto-generated code for
recreating edited windows in section 2.1Tutorial . In brief, click right over the
background of a dialog window, chooseCode from that menu andSave Code To
File from the submenu. A shortcut is to left click in the background of the
window while the Control key is down.

1.6 Interface Builder Dialogs

The Interface Builder has 5 special dialog windows of its own to aid you in creating yours.
These are theWidget Palette, theWidget Editor, theWindow Editor, theMenu Editor, and
theBuilder Preferences dialog.

Each of the Builder dialogs except the Preferences dialog can be selected from the
Builder menu, and the three editor dialogs can alternately be selected from the IB's pop-up
menus. The Preferences dialog is displayed by choosingInterface Builder Preferences
from the Preferences menu.

The IB dialogs will take a bit longer than usual to come up the first time you select them,
since they are each created “lazily” the first time they are needed, as are most of the system
windows in Allegro CL for Windows.

ALLEGRO CL for Windows: Interface Builder 1 - 5

G
etting

S
tarted

Each of the Builder dialogs can be hidden from view by closing them from the system
menu box at the upper left corner of the window. Either double-click the box, or single-
click it and selectClose from its menu. Or just press control-F4 when the window is
selected. The IB dialogs are not destroyed when you close them, as windows are by default.
They are simply made invisible, and will come up more quickly when you call on them the
next time.

1.6.1 The Builder Preferences Dialog

The Builder Preferences dialog allows you to specify various parameters that control the
operational style of the Builder. The only way to select this dialog is by choosingInterface
Builder Preferences in the Preferences menu, or its keyboard shortcut (Control-Shift-F).
When you alter the value of widgets on this dialog, the changes take effect immediately;
there is no need to click on an Apply button as with the editor dialogs or to close the pref-
erences window (though you'll likely want to close it to get it out of the way). For the few
text-widget items, you will need to tab out of the item or select another window before the
change takes effect.

Note that the IB preferences are handled separately from the preferences for the rest of
Allegro CL for Windows, which is why they are not part of the standard Preferences dialog.
They are saved to a separate file than the other Allegro CL preferences. To cause the
Builder preferences to be loaded automatically when Allegro CL is launched, you should
save them into a file calledibprefs.lsp in the directory that contains thelisp.exe that you run.
(The other Allegro CL preferences are loaded fromprefs.lsp in this same directory.) Use
theSave at the upper right corner of the Builder Preferences dialog to perform the save.

1 - 6 ALLEGRO CL for Windows: Interface Builder

Here is the preferences dialog, followed by brief descriptions of the various widgets on
it. (Note that we have produced a monochrome picture for readability but much of the 3-D
detail is lost.).

Drag Actual Widgets (rather than an outline) Default: On

When you move and stretch widgets interactively, the actual widget will be
dragged if this option is on. Otherwise you will drag a simple black rectangle, and
the widget will jump to its new location once you click the rectangle into place.
While moving the widget itself is more intuitive and slicker-looking, moving the
black rectangle may be smoother on some machines, allows you to see where the
widget was during the move, and lets you align the widget with where it was (in
case you want to move it either vertically or horizontally only).

Sticky Move Horizontal /Vertical Default: On

These two check boxes specify whether the sticky alignment feature is in effect
in the horizontal and vertical directions independently. You may want to disable
stickiness if you want to position widgets where they happen to be nearly but not
exactly aligned with other ones. Alternately, you can toggle horizontal stickiness
off and on by pressing the control key while dragging a widget, and likewise tog-
gle vertical stickiness by pressing the shift key while dragging.

ALLEGRO CL for Windows: Interface Builder 1 - 7

G
etting

S
tarted

Sticky Distance Default: 4

Specifies the number of pixels away from alignment within which the moving
widget must be in order for it to be snapped into exact alignment, assuming that
sticky alignment is currently turned on.

Min Pixels Btwn Widgets Default: 0

By default (with this option set to zero), when you move or resize a widget so that
it overlaps other widgets or subwindows, it is then shifted automatically so that
it butts up against the other objects but without overlapping them. (Sometimes the
Builder doesn't find an obvious non-overlapping spot at which to place the mov-
ing widget, in which case it will remain overlapped and a beep will sound.)

If you set this option to a positive number, then the moving widget will be moved
even farther so as to maintain at least that many pixels between it and other wid-
gets. If you want to place a series of buttons exactly 8 pixels apart, you could set
this option to 8 and then move the buttons near each other one at a time and let
the Builder set the distance between them to be 8 pixels.

If you set this option to a negative number, then widgets will be allowed to over-
lap by a number of pixels equal to the absolute value of the number. You can also
set this option tonil , in which case all overlapping constraints are removed
completely.

Confirmation: Deleting a Widget Default: On

When you delete a widget or group of widgets interactively with the Builder, you
will first be prompted for confirmation with a pop-up dialog if this option is
selected. Otherwise the widget(s) will be deleted without hesitation. Accidentally
deleted widgets can still be recreated via the Undo item on the Window Pop-up
Menu.

Confirmation: Overwriting Unaccepted Edits Default: On

Sometimes a widget is read onto the Widget Editor even though the modifications
for the widget that is currently being edited there have not yet been applied. If this
option is on, you will first be asked if you want to apply those changes to the cur-
rent widget before editing the new one, or discard the changes, or cancel reading
the new widget onto the Widget Editor. If this option is off, then the modifications
for the current widget are discarded.

1 - 8 ALLEGRO CL for Windows: Interface Builder

Confirmation: Exiting with Modified Windows Default: On

If you try to exit Allegro CL while there are windows that you have edited with
the Builder and that haven't been saved to file since your most recent changes,
then you will first be prompted for confirmation in a pop-up dialog if this option
is on. You can either have the dialogs saved and continue exiting Allegro CL, dis-
card the modifications since the last save, or cancel exiting Allegro CL. If this
option is off, the modifications will be discarded and Allegro CL will continue to
exit.

Break on User Errors Default: Off

If you make certain errors while using the Builder, such as specifying an invalid
value for a widget attribute, this option determines how you will be notified. If it
is off, a beep will sound and a message will be printed in the Allegro CL status
bar, and the current operation will continue normally. If it is on, then a Lisp break
will occur with the usual Restarts dialog including options to abort or debug, and
the current operation will be interrupted.

Use Cascading Submenus Default: On

When you pop up the right-button Window Menu or Widget Menu, the submenus
of that menu will cascade to the side if this option is on. If it is off, the submenus
will pop up independently in the same location. Cascading menus allow you to
browse the whole menu hierarchy, but force you to move the mouse further in
order to select an item on a submenu.

Object Under Mouse Messages Default: On

When the mouse cursor moves over widgets in a dialog window that is in edit
mode, if this option is on then help messages will be displayed in the Allegro CL
status bar indicating what each type of mouse click will do if performed on the
object under the mouse. After you become familiar with these actions, you may
want to turn this option off, because these messages cover over other informative
messages that the builder displays after completing various operations. A single
object-nonspecific message will still be printed when the mouse enters a window
that is in edit mode.

Allow Editing of System Dialogs Default: Off

When you select a window to edit with the Builder, you normally can choose only
from the set of windows that were originally created with the builder. If this
option is selected, you will also be able to select any other dialog window, includ-

ALLEGRO CL for Windows: Interface Builder 1 - 9

G
etting

S
tarted

ing Allegro CL system dialogs. The additional windows will not appear on the
pop-up menu of windows to edit, but you can select them by mousing them
directly instead of an item on the menu.

While modifying the Allegro CL system dialogs is not supported, you can use
this option to explore them at your own risk.

Use Arrow Cursors Over Widgets Default: On

If this option is on, the mouse cursor will change while moving it over a widget
on a dialog that is in edit mode to tell you which move or stretch operation is pos-
sible at each point over the widget. If you find the frequent cursor changes annoy-
ing, you can turn this option off, and the cursor will remain a cross when moving
over widgets.

Use Neater But Slower Code Printer Default: On

When the Builder generates the Lisp source code to recreate your windows, it
pretty-prints the code to a file. Standard pretty-printing puts the code into an eas-
ily-readable format generally, but doesn't arrange each attribute name and value
onto its own line of text. If this option is on, these attribute plists will be further
arranged this way for easy editing. This slows down the code saving quite a bit,
so you may want to turn this option off to speed up saving your windows to file.
Or you could turn it off during development until if and when you decide that you
want to view or edit the code file, and then turn it on for a final save before you
view the code.

Read New Objects Onto Editor Forms Default: On

If you create a new widget or window and the editor dialog for that type of object
is not hidden at the time, then the new object will automatically be read onto that
editor dialog if this option is on.

Read Moused Objects Onto Editor Forms Default: Off

If this option is on, then anytime you click on a widget or window that is in edit
mode and the editor dialog for that type of object is currently not hidden, then that
object will be automatically read onto the editor dialog.

Save Current Widget Values with Dialog Code Default: On

By default, when you save an edited dialog to file, all of the current attributes of
its widgets are recorded in the file, including their current values. If this option is
off, then the values for text widgets are saved asnil or "" as appropriate rather
than saving their currently displayed strings.

1 - 10 ALLEGRO CL for Windows: Interface Builder

Code File Columns Default: 72

When the Builder generates the code for recreating a window and saves it to file,
the Lisp forms will be pretty-printed with a maximum (where possible) of this
many characters per line.

The font buttons on the Preferences dialog
The three Default Font buttons (for fixed, proportional, and bold fonts), when clicked on,
display a choose-font dialog that allows you to choose the default font of the appropriate
type (but no check is made to ensure you have specified a fixed, proportional, or bold font).
The current fonts are displayed in the button labels.

ALLEGRO CL for Windows: Interface Builder 2 - 1

Tutorial

Chapter 2 Tutorial

This chapter contains a long tutorial, with examples of how to do many things. Then at the
end of the chapter are several sections with additional useful information.

2.1 Tutorial

In this tutorial, we create a dialog and do various things with it. You, of course, will likely
want to create a different dialog, but you may want to do things similar to the things done
here. Even if you do not want to follow the tutorial, you may find a heading that describes
something you want to do. Reading the information under that heading (and perhaps some
preceding headings) should tell you how to do what you want.

How to create a dialog window
ChooseCreate Window from the Builder menu. Another menu will pop up displaying the
classes of windows that can be created with the IB. The most interesting of these isDialog,
since that's the only type of window on which you can place widgets. (If you programmat-
ically create subclasses of any of the displayed window classes, they will thereafter appear
on this pop-up menu of window classes that can be created and edited with the IB.)

ChooseDialog from the submenu.

Place the new dialog by pressing the left button down where you want the upper-left cor-
ner to be, and then dragging the mouse to where you want the lower right corner to be,
releasing the button at that point.

Note that the interface builder prints many prompts in the Allegro CL status-bar, includ-
ing some prompts that are visible only while the mouse is held down, such as when you
drag out the lower right corner. When you release the mouse, a new dialog window will
appear on the screen.

2 - 2 ALLEGRO CL for Windows: Interface Builder

An alternate way to create a window is to click the Create Window button (it has a picture
of a blank window) on the Allegro CL toolbar.

Note that when you move the mouse cursor over your new window that the cursor
changes to a thin black cross. This indicates that the window is currently inedit mode.
While in edit mode, mouse clicks do not perform their usual behavior as defined for your
application, but rather perform special functionality as defined by the interface builder
itself.

A blank dialog looks like the following:

The dialog menu: what it is and how to display it
Click the right mouse button over the interior (client) area of your new dialog window. The
pop-up menu for editing windows will appear. You can release the mouse button to peruse
the menu since you need to click again to select an item. Left-click onSet Attribute, Main
Attributes , and thenTitle . When the small dialog pops up, type a new string to display in
the title bar of your new window. When you press return, the new title appears on the win-
dow. We give our dialog the title “New Dialog”.

ALLEGRO CL for Windows: Interface Builder 2 - 3

Tutorial

How to create a widget
Go back up to the Builder on the Lisp menu bar, and selectPalette from the menu. After a
moment, a palette showing each of the standard types of widgets will appear. (We use the
term “widget” interchangeably with the term “dialog item”.)

On the widget palette, locate the single-item-list button near the middle left. It’s the one
with the label inbold. Of course, these labels do not appear on the screen, but as you move
the mouse over the palette, the type of widget is printed in the status bar.

Click on the palette's single-item-list button now. The item will stay depressed as it waits
for you to position a new list widget, to remind you what you are creating.

Click the left mouse button down (and don't release yet) in the interior of the dialog win-
dow that you created earlier. After a brief moment, a list widget will appear with its upper
left corner where you clicked. While still holding the mouse button down, you can option-

Button

Cancel-Button

Radio-Button

Editable-Text

Multiline-Editable-Text

Static-Text

Single-Item-list

Outline

Lisp-Group-Box

Horizontal-Scroll-Bar

Progress-Indicator

Up-Down-Control

Header-Control

Default-Button

Picture-Button

Check-Box

Lisp-Text

Multiline-Lisp-Text

Combo-Box

Multi-Item-list

Dropping-Outline

Tab-Control

Vertical-Scroll-Bar

Track-Bar

Static-Picture

Grid-Widget (Professional only)

2 - 4 ALLEGRO CL for Windows: Interface Builder

ally drag the lower-right corner of the widget in order size it with the same click with which
you positioned it on the window.

Here is our dialog with the new widget.

How to move a widget
Move the mouse over the new list widget. Notice that the mouse cursor changes depending
on what part of the widget it is over. This indicates what a left-click will do at that particular
spot on the widget. The four-directions arrow in the middle of the widget indicates that you
can move the widget by clicking and dragging near its center. Try this now. The other
arrows around the edge of the widget indicate which one or two directions you can stretch
the widget in at each spot.

When you move the mouse over the widget (while its dialog is in edit mode), a message
is displayed in the Allegro CL status bar indicating what other mouse buttons, sometimes
combined with shift keys, will do. These other clicks will have the same effect regardless
of what directional cursor is showing over the widget; the simple left-click is the only one
that depends on the position of the cursor over the widget.

Switching between edit mode and run mode
ChooseRun Window from the Builder menu. This will pop up a menu containing the win-
dows created by the IB (in our example, the menu will contain only our new dialog, since
that is all we have created so far). You select a window by either choosing it on the pop-up
menu, or by clicking directly on it.

Do this to the new dialog now.

Now when you move the mouse cursor over the new dialog, the usual arrow cursor
appears indicating that the window is inrun mode. This is the normal mode for windows
and in this mode, the mouse has the usual effect (rather than being an editor tool).

ALLEGRO CL for Windows: Interface Builder 2 - 5

Tutorial

Click an item in the list widget on the new dialog. As you expect in run mode, the item
clicked over is selected. In fact, you are already running your application at this point, and
if the list widget had a set-value-fn attached it would be invoked already. One of the strong
points of the IB is the ease with which you can switch between modifying and testing your
application. Dialogs or other windows can be individually switched between edit and run
mode.

Other ways to switch between edit mode and run mode
• Use the Run Window and Edit Window buttons on the Allegro CL toolbar

(they are next the Create Window button you used above -- the status bar
describes the buttons on the toolbar as you pass the mouse over them).

• Use the keyboard shortcuts for the items on the Builder menu. Typing Ctrl-
Shift-R while the mouse is over a window puts the window into run mode at any
time. Ctrl-Shift-E puts it into edit mode. If the mouse cursor is over an editable
window when you type Ctrl-Shift-E, it will begin editing that window
immediately. Similarly with Ctrl-Shift-R. If the cursor is not over an editable
window, the key combinations pop up a menu listing windows (the same
behavior as choosing the menu items, as described above). If the window under
the mouse was not selected, it is selected automatically at this time. Click over -
- i.e. select -- the window if it does not go into edit mode. Edit mode is in effect
only when the window is selected.

The mouse cursor tells you the mode
When a window is in edit mode, the cursor is a thin black cross or a double or four-way
arrow. When a window is in run mode, the cursor is the normal cursor (usually an northwest
arrow).

Other ways to create a widget
An alternate way of creating a widget is from the window menu (in case you don't want to
bring up the widget palette just to add a couple of widgets). Right-click on the background
of your dialog window, selectCreate Widget from the menu that pops-up. Submenus will
display the widget choices.

ChooseButtons, and thenPicture Button. Then click and drag on the dialog window
background to position the new picture-button widget just as when using the widget palette.

2 - 6 ALLEGRO CL for Windows: Interface Builder

The ‘sticky’ widget alignment feature
Left click near the center of the new picture-button widget and drag it around the list wid-
get. Notice what happens whenever an edge of the picture-button is nearly aligned with an
edge of the list: the moving widget is automatically scooted over just a bit so as to be
exactly in line with the other widget, and one or more red lines are drawn to indicate the
particular alignment in effect. This type of alignment gives you better control than aligning
to an arbitrary grid. Sticky alignment also works when resizing widgets.

While stickiness is usually handy, you sometimes want to position a widget so that it hap-
pens to be nearly aligned with another without it annoyingly snapping into alignment. For
these occasions, there are a couple of ways to disable the stickiness.

• If you want to turn it off for a while or permanently, you can do so on the IB's
Preferences dialog. (ChoosePreferences from the Builder menu. The Sticky
Move Horizontal and Vertical choices control sticky alignment in the two
directions. The same dialog allows you to choose the number of pixels away that
triggers stickiness.)

• You can temporarily disable stickiness with the Control and Shift keys. After you
have left-clicked to begin moving or resizing a widget, press the control key at
any time to toggle horizontal stickiness, or press the shift key to toggle vertical
stickiness.

Using the widget menu
If you right-click over a widget in a dialog in edit mode, the widget pop-up menu appears.
Following our example, right-click on the single-item-list widget that you created and
selectSet Attribute, thenClass-Dependent, thenRange (the contents of the menus are
widget-specific). A pop-up dialog is displayed, showing the default range that the IB uses
for list widgets, namely the list(:one :two :three) . Position the text cursor just
inside the right parenthesis and add another element, such as:four . Then either click the
OK button or press Alt-O to accept the new range value. The element that you added to the
range will appear in the widget. If it doesn't fit, resize the widget as necessary.

Using the editor dialogs
Up to now we have changed attributes of a window and a widget by using their pop-up
menus. An alternate technique for editing these objects is by using the IB’s special dialog
windows that display all the attributes and their values at once. These dialogs give you a

ALLEGRO CL for Windows: Interface Builder 2 - 7

Tutorial

better overall view and allow changing several attributes quickly, while the pop-up menus
may be handier for making one or two quick changes without bringing up the larger editor
dialog.

Right-click on the single-item-list widget and selectEdit on Form from the menu that
pops-up. After a moment, the Widget Editor dialog appear, displaying information about
the widget that you clicked. (The keyboard equivalent is to left click on the widget while
holding the Alt key down.

Here is the Widget Editor (as a monochrome picture, so 3-D details are lost):

The large list at the bottom of the Widget Editor displays all of the attributes that can be
modified by the IB for the type of widget that it is currently displaying. Most of these
attributes correspond to the initargs that you can pass tomake-dialog-item when cre-
ating widgets programmatically.

To continue our example, click on theBorder entry at the top of the list. The value for
that attribute, namelynil , will appear in the single-line text widget just above the list of
attributes. You can select any attribute from the list this way and edit its value by typing
into the single-line text widget. Type:none now to remove the border. Notice that the
change doesn't take effect yet, though; you still must click on theApply button on the Wid-
get Editor to apply the changes that you've made to the widget. Do this now. The border of
the widget disappears. The Apply button is default-button widget, so you can also apply
your changes by simply pressing the Enter key. After accepting your edits, the Apply key
will gray to reassure you that you don't have un-applied edits remaining.

2 - 8 ALLEGRO CL for Windows: Interface Builder

An alternative way to enter a new value for an attribute is to use theModify button, just
above the single-line text widget where you type new values. Click theModify button now
and a menu of choices appears. If the value were a Boolean (sot andnil are the only pos-
sible values), clicking onModify would simply toggle the value.

The Modify button will perform various kinds of alternative editing depending on the
type of attribute that is currently selected. Another attribute with multiple possible values
is Bottom-Attachment. Click on it, and then click theModify button again. A menu pops
up with the possible values for bottom-attachment. (If you select:bottom from the pop-
up menu, and then click theApply button to accept that change, then the list-box widget
will maintain a constant distance between its lower edge and the lower edge of its parent
dialog window whenever that window is resized.) Other attributes that have long arbitrary
values, such asRange, will pop up a dialog with a multi-line-editable-text widget when you
use theModify button. Some types of attributes have no extended editing, and theModify
button will be grayed out when they are selected.

The Modify button invokes what is loosely called extended editing of an attribute.
Another way to invoke extended editing is to double-click the desired item in the large list
of attributes on the Widget Editor. Double-click on theBackground-Color item now and
the Color Editor dialog will pop up, since background-color is a color attribute. If you
change the color with the Color Editor and click itsOK button, note that the color of your
list widget doesn't change yet, because you still always need to click theApply button on
the Widget Editor (or press Enter) to apply the changes.

You may notice that the Widget Editor automatically updates itself if you change the
widget that it is displaying in some other way, such as by moving the widget or changing
an attribute with its pop-up menu. If you're not currently using the Widget Editor, you may
want to close it (using the close box at its upper left) in order to avoid any redisplay delays
as the Widget Editor updates itself.

How to apply the widget editor to a widget
If you display the widget editor by choosingEdit on Form from the menu that pops-up
when you right click over a widget, the editor will edit that widget. If the editor is already
visible, you can click onSelect and then click on a widget. The edit will then edit the
selected widget.

ALLEGRO CL for Windows: Interface Builder 2 - 9

Tutorial

How to set widget event handlers
So far we've just been changing the appearance of the application interface. This is all well
and good, but not entirely useful unless the widgets can be made it do something. The IB
can help in this area also, by making it easy to quickly locate the underlying lisp code for
each widget that you write to respond to various events for that widget.

What we will do in our example is add a status bar to the dialog, and then arrange it so
changing the value of the single-item-list widget prints a message to that status bar. Of
course, your application will likely want to do something more complicated than printing
a message, but that can be arranged by having the function you write do something other
than print a message. The important thing is knowing how to set the function.

We need a bit of preparation for the following example. Select our example dialog and
make sure it is in edit mode (the cursor will be a thin cross -- if it is not, put it in edit mode
now by entering Ctrl-Shift-E or choosingEdit Window from the Builder menu). Right-
click the dialog's background, and, from the menu that appears, selectSet Attribute, then
Flags, thenStatus Bar. A status-bar will be added to the dialog, useful for displaying mes-
sages to the user that pertain to that window. Here is our dialog with the status bar (and the
picture button we added some time ago).

Now return to the Widget Editor dialog. It should still be displaying your single-item-list
widget. (If not, click theSelect button and then click on your single-item-list widget to read
it back onto the Widget Editor.) The event handlers for a widget (such as set-value-fn, set-
focus-fn, and mouse-in-fn) are treated just like other types of attributes, so scroll the Widget
Editor's list of attributes down to the itemSet-Value-Fn and click this item. Its default
value is the function nametrue , which tells the widget to do nothing when its user value
changes. Type the symbolmy-set-value into the single-line text widget where it says
TRUE, and press Enter. Your list widget will now try to run the functionmy-set-value
when its value changes. Click theModify button. Since the symbolmy-set-value has
no function binding yet, a new Lisp-editor window will appear with a skeleton definition

2 - 10 ALLEGRO CL for Windows: Interface Builder

for this function, complete with the parameters that are needed for a set-value-fn function.
(If the function already existed, a find-definition would find the existing version instead.)

The text cursor will be positioned where you can immediately begin entering your own
code. Insert the following form at the cursor:

(window-message (dialog-item-dialog widget)
 "You selected ~a" new-value)

Now evaluate the definition (you can do this by typing Control-D if you are using host
mode in your editor windows, which is the default). Then click on your dialog and put it
into run mode (remember that you can do this by typing Control-Shift-R with the mouse
over the dialog, or use the Allegro CL menubar or toolbar). Then click to select a new item
in your single-item-list widget, and if these instructions are adequately written then a mes-
sage will be printed in the status-bar of your dialog. So that's how easy it is to create a run-
ning application!

Here is the dialog with the message displayed:

An alternate way to find the source code associated with a widget is to use the right-but-
ton widget pop-up-menu, where the event handlers are listed underSet Attribute and then
Event Handlers. To find the set-value-fn in particular, you can use the shortcut of holding
the Control key down and left clicking the widget.

How to save user-written code for widget event handlers
Even though the IB created the skeleton code for the widget's event handler function and
gave a default filename to the new Lisp-edit window that it created for it, you can save the
code wherever you want, as with the rest of your source code. And while the IB will put all
new widget event handler functions that it creates for a given dialog into a single window,
you can move individual functions from there to various other buffers if you want. Just
remember that you will need to evaluate the function in its new window afterwards (or load

ALLEGRO CL for Windows: Interface Builder 2 - 11

Tutorial

its source file) in order forfind-definition to find the code in its new place. If you want to
avoid moving the definitions to your own files, just define the functions yourself in the
appropriate files before using the IB to locate them.

How to save the auto-generated code for recreating edited
windows
Once you have interactively created the windows and widgets that you need, they must be
saved to disk in some way so that your application can recreate them later programmati-
cally. The IB accomplishes this by writing Lisp source code that recreates each window to
a standard.lsp file. The source code uses user-level Common Graphics functions such as
open-stream , open-dialog and make-dialog-item , just as you might use
yourself to create windows and widgets programmatically.

To save the source code for your dialog window, click right on its background and select
Code from the window pop-up menu and thenSave Code to File. Since you haven't yet
established what file to save the source code in, the file selection dialog will pop up to
prompt you for a pathname. After you enter the pathname once, it will be remembered for
future saves, though you can specify a different path later if you want.

While the source code is being written, the cursor will change to an hourglass and the
Allegro CL status-bar will indicate that a save is taking place. This operation can take a
while, especially if you have a lot of picture-button or static-picture widgets on a dialog,
since the bits that comprise the images for these widgets are saved as part of the window's
code file so that you don't have to load them from various other files at runtime.

A shortcut for saving a window's source code is to hold the control key down and left-
click the background of the window. You may wish to do this fairly often, just as you do
with source code buffers.

When the save operation has completed, right-click the dialog again, selectCode and
thenView Code File. A Lisp-edit window will pop up displaying the source code that the
IB generated for this dialog window. While it is the goal of the interface builder to generate
code that requires no further editing on your part, you can still always edit the generated
source code directly if you want. After you have recreated the window by loading the edited
code, you can once again edit the window interactively and save it with the Interface
Builder.

If you create a hierarchy of windows with the IB, you need only save the uppermost par-
ent window to disk, since code will be generated for all of its child windows along with the

2 - 12 ALLEGRO CL for Windows: Interface Builder

code for the parent itself. You could still save code for a sub-hierarchy independently if you
want, though that shouldn't be necessary.

The code for the dialog we have created is at the end of this chapter.

How to create and edit menus
In addition to editing windows and widgets, the IB can also be used to create and edit menu
bars and pop-up menus. Right-click the background of your dialog and selectEdit Menu
Bar from the pop-up window menu. The Menu Editor dialog will appear. Since your win-
dow doesn't have a menu bar yet, the Menu Editor will display its representation of a default
menu, containing two items calledFile andEdit , these each containing three sub-items.

Here is part of the menu editor:

As you can see, the menu hierarchy is represented as an outline, with sub-items indented
below their parent items. This outline can represent either a menu bar or a pop-up menu.
For a menu bar, the left-justified items represent the actual pull-down menus on the menu
bar, while for a pop-up menu the left-justified items represent the actual menu items on the
menu that initially pops up, which can have cascading submenus just as the pull-down
menus on a menu bar can.

ALLEGRO CL for Windows: Interface Builder 2 - 13

Tutorial

Each of the menu-items in the default menu simply prints a string to the toploop to
remind you that you haven't implemented that item yet. While Allegro CL has functionality
for each of these standard Windows menu bar entries, this built-in functionality is mean-
ingful only in the context of the Lisp development environment where you are editing Lisp
source code files. If you are to attach some meaning to these entries for your own applica-
tion, you will need to write your own code to interpret each of these items however it is
appropriate for your application.

For this tutorial, let's just add an item and test it out. Click on theSave item in the menu
item hierarchy and then click on theAdd button. A new menu item call New Item will be
added to the hierarchy beneath the selected item, and the cursor will be placed into the Title
field on the menu editor, ready for you to enter a title to be displayed on the new menu item.
Enter "~Yow" in this field, then tab to the Value field and enter the following form:

(lambda ()(print "Yow"))

This creates a new menu item that prints the string "Yow". Next click on the arrow on the
Synonym combo-box, and select the letter Y from the choice list, and click on the "Ctrl"
check-box just below that. This will make the keyboard shortcut Control-Y invoke the new
menu-item whenever the window that this menu-bar is on has the keyboard focus.

Though we're using lambda lists in this example, you probably will usually want to use
symbols that name functions for your menu-item values, since (1) it's easier to find the code
using find-definition on the symbol rather than looking through the large auto-generated
window code file for a lambda expression, and (2) there's not much room for editing a
lambda expression on the menu editor.

Also, a menu-item value is not always a function that takes zero arguments as in this
example, but is instead whatever kind of value is expected by the selection function of the
menu on which that menu-item lies. We just now added a menu-item under the File menu,
whose selection function isfuncall-menu-item (which you can see on the first line
of the menu item hierarchy).funcall-menu-item is a documented Common Graphics
function that expects the menu-item's value to be a function that takes no arguments, but
you can use any selection function that you like instead offuncall-menu-item , pro-
vided that it takes the 3 argumentsmenu, menu-item , andstream .

Now that you've entered a new menu item, either press Enter or click theApply button
to copy the edited menu back to your dialog window, which it was read from. Since the
Menu Editor is so large, it likely has covered up your dialog window at least partially; if so,

2 - 14 ALLEGRO CL for Windows: Interface Builder

then click theExpose button on the Menu Editor, which exposes the window whose menu
is currently being edited.

How to make a window a top-level window (so menu bar
appears)
Notice that the menu bar doesn't appear yet on your window. The reason is that in MS-Win-
dows only top-level windows can have menu bars. In Allegro CL, this means windows
whose parent window is the value of*screen* . The interface builder initially creates all
windows on*lisp-main-window* so that you can easily manipulate them alongside
the other windows in the Lisp development environment, but you can switch any window
to be top-level at any time. Pop up the window menu on your dialog window, selectSet
Attribute , thenFlags, thenTop-Level-P. The dialog will be recreated directly on the
screen, and will have the menu bar that we created.

Even though your dialog is still in Edit mode, you can use the menu items at any time.
Click on the File menu and selectYow (or just type Control-Y while your dialog has focus),
and "Yow" will be printed in the Toploop window.

Editing top-level windows
Since your dialog is now a top-level window (its parent is*screen*), if you click any-
where in the main Lisp window it will cover your dialog. Editing top-level windows is
when theExpose button on each of the IB editor dialogs is most handy for finding the win-
dow being edited. In general though, it's probably easiest to develop your windows as non-
top-level ones (except while testing their menu bars), and then switch them to top-level if
needed toward the end of the development period. You may not even need to do this at all
when developing a runtime application, because in the runtime lisp*lisp-main-win-
dow* is set equal to*screen* since there is no main Lisp window, and so the windows
that you developed on the main lisp window will be created directly on the screen at runt-
ime anyway.

The window editor dialog
From the Builder pull-down menu, selectWindow Editor . This dialog corresponds to the
Widget Editor, except that it applies to dialogs and other windows rather than to widgets.
Rather than using a single list of the modifiable window attributes, the Window Editor uses
separate widgets for them.

ALLEGRO CL for Windows: Interface Builder 2 - 15

Tutorial

You can alternately bring up the Window Editor by selectingEdit on Form from an
edited window's pop-up menu, or by holding the Alt key down and left-clicking a window's
background. Here is the dialog.

Code to generate our dialog
We discussed saving code under the headingHow to save the auto-generated code for
recreating edited windows above. Recall that to save the source code for your dialog win-
dow, click right on its background and selectCode from the window pop-up menu and then
Save Code to File. A dialog appears allowing you to specify the path of the new file. Here
is the code from the example dialog that we created. Notice it lacks compactness, a typical
feature of machine-generated code. (This code is included to show what code generated by
the IB looks like. You should not use this code yourself. Instead, generate code from the IB
as we have done.)

;; Define the dialog :Dialog-1

(in-package :common-lisp-user)

;; Load the picture widget images from the corresponding .BML file.
(let ((pathname
 (merge-pathnames (make-pathname :type "BML")
 load-pathname)))
 (when (probe-file pathname) (load pathname)))

2 - 16 ALLEGRO CL for Windows: Interface Builder

(defvar *dialog-1* nil)

;; Return the window, creating it the first time or when it's closed.
;; Use only this function if you need only one instance.
(defun dialog-1 ()
 (if (windowp *dialog-1*) *dialog-1*
 (setq *dialog-1* (make-dialog-1))))

;; Create an instance of the window.
;; Use this if you need more than one instance.
(defun make-dialog-1 ()
 (setq *loaded-but-uncreated-windows*
 (delete 'dialog-1 *loaded-but-uncreated-windows*))
 (let (window-0 window-1 window-2 window-3 window-4)
 (setq window-0
 (open-dialog
 (list
 (make-dialog-item
 :widget 'single-item-list
 :name :single-item-list-1
 :title "Single Item List 1"
 :value :three
 :box (make-box 33 3 113 82)
 :tabstop t
 :groupstart nil
 :set-value-fn 'my-set-value
 :key 'capitalize-object
 :range (list :one :two :three :four)
 :font (make-font nil :arial 16 nil))
 (make-dialog-item
 :widget 'picture-button
 :name :picture-button-1
 :title "statpic.bmp"
 :value "Picture Button 1"
 :box (make-box 134 48 159 73)
 :border :black
 :tabstop nil
 :groupstart nil
 :background-color

ALLEGRO CL for Windows: Interface Builder 2 - 17

Tutorial

 (make-rgb :red 192 :green 192 :blue 192)
 :pressed-color-mapper
 (list
 (cons (make-rgb :red 192 :green 192 :blue 192)
 (make-rgb :red 0 :green 255 :blue 255))
 (cons (make-rgb :red 128 :green 128 :blue 128)
 (make-rgb :red 192 :green 192 :blue 192))
 (cons (make-rgb :red 0 :green 0 :blue 0)
 (make-rgb :red 128 :green 0 :blue 0)))
 :stretching t
 :cluster :default-picture-button-cluster))
 'dialog *lisp-main-window*
 :name :dialog-1
 :title "New Dialog"
 :font (make-font :swiss :system 16 '(:bold))
 :window-state :shrunk
 :window-border :frame
 :left-attachment nil
 :top-attachment nil
 :right-attachment nil
 :bottom-attachment nil
 :user-movable t
 :user-resizable t
 :user-closable t
 :user-shrinkable t
 :user-scrollable nil
 :overlapped nil
 :background-color (make-rgb :red 192 :green 192 :blue 192)
 :pop-up-p nil
 :window-interior (make-box 74 68 248 173)))
 (setf (window-editable-p window-0) t)
 (setf (getf (stream-plist window-0) :path) "z:\\tmp\\ibcode")
 (setf (getf (stream-plist window-0) :startup-state) nil)
 (setf (getf (stream-plist window-0) :top-level-p) nil)
 (setf (help-string window-0) (delete #\Newline nil))
 (setf (getf (stream-plist window-0) :package) nil)
 (setq window-1
 (open-dialog (list)
 'common-status-bar window-0

2 - 18 ALLEGRO CL for Windows: Interface Builder

 :name nil
 :title nil
 :font (make-font :swiss :system 16 '(:bold))
 :window-state :normal
 :window-border :none
 :left-attachment :left
 :top-attachment :bottom
 :right-attachment :right
 :bottom-attachment :bottom
 :user-movable nil
 :user-resizable nil
 :user-closable nil
 :user-shrinkable nil
 :user-scrollable nil
 :overlapped nil
 :background-color (make-rgb :red 255 :green 255 :blue 255)
 :pop-up-p nil
 :window-interior (make-box 0 82 174 105)))
 (setf (window-editable-p window-1) t)
 (setf (getf (stream-plist window-1) :path) nil)
 (setf (getf (stream-plist window-1) :startup-state) nil)
 (setf (getf (stream-plist window-1) :top-level-p) nil)
 (setf (help-string window-1) (delete #\Newline nil))
 (setf (getf (stream-plist window-1) :package) nil)
 (add-common-status-bar-to-window window-0 :font
 (make-font :swiss :system 16 '(:bold)) :parts nil :min-height
 0)
 nil
 (let* ((box (getf *window-exteriors* (object-name window-0))))
 (when box (reshape-window-exterior window-0 box)))
 (show-window window-0 nil)
 window-0))
(unless (windowp *dialog-1*)
 (pushnew 'dialog-1 *loaded-but-uncreated-windows*))

ALLEGRO CL for Windows: Interface Builder 2 - 19

Tutorial

2.2 Managing the images used by picture widgets

When dealing with picture-button and static-picture widgets programmatically, the image
is stored as the dialog-item-title or dialog-item-value (respectively). The value for the
image can be of several types, including the filename of a.bmp or .ico file, an icon handle,
a pixmap array, or a symbol bound to either an icon handle or pixmap array. In the Builder,
the following subset of types is allowed:

1. A string naming the path of a .bmp bitmap file or a .ico icon file. When a
filename is used, an Allegro CL pixmap array is read initially from the specified
file, and then cached internally and converted to a pixmap handle (that is, a
Windows device-dependent bitmap) for faster redrawing. When you save the
dialog on which the picture widget lies, the lisp pixmap array is saved along with
the dialog.

The pixmap arrays are saved in a separate file from the one that you specify for
the dialog window itself. The pixmap file will be placed in the same directory and
with the same filename as the usual window file, except having the extension
.bml. The dialog window's file will contain a line at the top that will load the.bml
file from the same directory that the dialog's file is currently being loaded from,
so that you can still load everything that's needed for that dialog by simply load-
ing its file as you do for any window. If you move the dialog's file to a different
directory then just be sure to move the corresponding.BML along with it.

The saved pixmap will be used from then on, so that you don't need to distribute
the.bmp or .ico files with your application. If, however, you edit the original.bmp
or .ico file and wish to update the widget to use the new version, you can do this
by selecting theSync to Image File menu item on theClass-Dependent sub-
menu of theSet Attribute submenu of the right-button pop-up menu for the pic-
ture widget. This will remove the cache for that widget and any others that use
the same image file, re-read the image from the file, and redisplay the affected
widgets.

Note that when you are entering a filename for a picture-widget, either on the
Widget Editor or from the widget's right-button pop-up menu, you don't need to
type quotation marks and double backslashes, even though the value is some-
times not a string.

2. A symbol that is bound to an icon handle. To use an actual Windows icon for
a picture widget's image, you will need to callcg:extract-icon-from-

2 - 20 ALLEGRO CL for Windows: Interface Builder

file yourself to read a.ico icon file and return an icon handle, and then bind a
symbol to that icon handle before initially specifying that symbol as the title or
value of the picture widget. You will also need to distribute the.ico icon file(s)
with your application. To load them at runtime from the directory wherelisp.exe
is installed, you could use a form such as this:

(setq *icon1*
 (cg:extract-icon-from-file
 (merge-pathnames "icon1.ico"
 allegro:*application-directory*)))

2.3 A few useful functions

While the Builder is an interactive tool, there are a few functions that are particularly useful
to use along with it, typically in the toploop window. These functions are in thebuilder
package (nicknamedbill) or in thecommon-graphics (nicknamedcg) package.

Getting an Object By Mousing On It
For all three of the functions defined under this heading:

• Theprompt argument is printed in the Allegro CL status bar while waiting for
an object to be clicked on.

• If the immediate-p argument is non-nil , then there will be no wait for you
to click, and the object under the mouse cursor at the moment will be returned.

get-widget [Function]
Arguments: &key (:prompt "Select a widget")

:return-dialog-if-background-p :immediate-p
:highlighting-p

Package: builder

■ This function waits for you to click on a dialog-item, and then returns it or else
nil if you click elsewhere. Ifreturn-dialog-if-background-p is non-
nil and you click on the background of a dialog window, the dialog window will
be returned rather thannil . If highlighting-p is non-nil , then all widgets on
editable dialog windows will be boxed as the mouse cursor moves over them to show
that they are selectable.prompt andimmediate-p are defined above.

ALLEGRO CL for Windows: Interface Builder 2 - 21

Tutorial

get-window [Function]
Arguments: &key (:prompt "Select a window") :immediate-p

:no-widgets-p :no-single-frame-child-p
:screen-position

Package: builder

■ Waits for you to click on any Allegro CL window, and then returns that window,
or nil if you clicked elsewhere. Ifno-widgets-p is non-nil and a widget is
clicked on, then the widget's dialog window is returned. Ifno-single-frame-
child-p is non-nil and a frame-child pane window is clicked on, then the pane's
parent frame window is returned.prompt andimmediate-p are defined above.
If screen-position is a position andimmediate-p is non-nil , then the
window at that position on the screen at that moment is returned without waiting for
a click.

get-dialog [Function]
Arguments: &key (:prompt "Select a dialog window")

:immediate-p

Package: builder

■ Waits for you to click on a dialog window, and then returns it, ornil if you
clicked elsewhere. If a widget is clicked on, then the widget's dialog window is
returned.prompt andimmediate-p are defined above.

Customizing mouse behavior over objects in edit mode

edit-action [Generic function]

Arguments: window widget-or-window mouse-buttons offset

Package: builder

■ Determines what happens when a user clicks on a widget or window which is in
edit mode in the Interface Builder. You can write methods on this generic function to
map additional mouse button and shift key combinations to new functionality. The
arguments which this generic function is called with are:

window -- if a widget was moused, this is the dialog on which the widget lives.
Otherwise it is the window that was moused.

widget-or-window -- if a widget was moused, this is it. Otherwise it is the
window that was moused, and is the same as thewindow argument.

2 - 22 ALLEGRO CL for Windows: Interface Builder

mouse-buttons -- thelogior 'ed combination of mouse buttons such as left-
mouse-button and shift keys such as ALT-KEY which were used click the win-
dow or widget.

offset -- a position denoting the distance from the upper-left corner of the wid-
get or client area of the window at which the user clicked.

■ Example: this rather trivial example makes a Control-ALT-left-click inspect a
widget or window that is clicked while editing it with the interface builder:

(defmethod bill:edit-action ((window basic-pane)
 (window-or-widget t)
 (mouse-buttons
 (eql #.(logior control-key alt-key
 left-mouse-button)))
 offset)
 (inspect window-or-widget))

Getting an object from its name
The following two functions return window or widget objects from their object-names.
This can be handy with the Builder, since object-names are printed by default in the Allegro
CL status bar as you move the mouse over windows and widgets when they are in edit
mode. These are Common Graphics functions that are available in a runtime image.

window [Function]
Arguments: object-name

Package: common-graphics

■ Returns a window given its object-name, assuming that the window lies either on
lisp-main-window or *screen* .

widget [Function]
Arguments: object-name dialog

Package: common-graphics

■ Returns a dialog-item given itsobject-name and the dialog window that it lies
on. Thedialog argument can be either the dialog window object or its object-
name.

ALLEGRO CL for Windows: Interface Builder 2 - 23

Tutorial

2.4 Editing a window that was not created with the builder

A particular window may be edited only if itswindow-editable-p attribute is non-
nil . By default, this is true only of windows that have been created with the Builder. If
you would like to edit a window that was created programmatically, you can do so simply
by flagging it as an editable window like this:

(setf (window-editable-p my-window) t)

In order to make use of the edited version of the window, you need to stop using the orig-
inal programmatic definition of it and use the one that the builder generates instead. Further,
the parent of the window must be*lisp-main-window* or *screen* in order to be
selectable for editing.

2 - 24 ALLEGRO CL for Windows: Interface Builder

[This page intentionally left blank.]

ALLEGRO CL for Windows: Interface Builder 3 - 1

M
enus and

m
ouse actions

Chapter 3 Menus and mouse
actions

3.1 Right-Button Pop-Up Menus

Clicking the right mouse button over a window that is in edit mode pops up a menu of
choices that are applicable to the item that was clicked on. If you clicked on a widget on a
dialog then the Widget Menu appears, and if you clicked over the empty background of a
window then the Window Menu appears.

The Window Menu is always the same except that certain items are grayed out when they
are not applicable to the class of window that you clicked on. In particular, items pertaining
to widgets are available only for dialog windows (and instances of dialog subclasses).

The Widget Menu is also always the same except that theSet Attribute submenu has a
Class-Dependent submenu that lists all of the attributes that apply to the particular class
of the widget that was clicked on but that do not apply to all widget classes.

Note that while you click the right mouse button to pop up the menu, you must release
the right button and then click the left button on the desired menu item in order to select it.
To select nothing from the menu, left-click somewhere off the menu.

By default, the submenus cascade to the side when you click on an item that has a sub-
menu. This allows for perusal of the whole hierarchy of menu-items, since you can back up
from each submenu to its parent, or hold the left mouse button down and drag the cursor
over all of the items of a menu to see all of their submenus. On the other hand, since there
are three levels of menus you sometimes have to move the mouse a long way to select the
desired item. If this is annoying, you can de-select theUse Cascading Submenus item on
the Builder Preferences dialog, which will cause the submenus to pop-up at the same loca-

3 - 2 ALLEGRO CL for Windows: Interface Builder

tion as their parent. You can tell which mode is in effect since arrows indicate cascading
submenus and ellipses (...) indicate pop-up submenus.

3.2 The Widget Pop-up Menu

Here are the choices on the right-button pop-up menu for widgets:

Object Name

The topmost item of the widget menu displays and allows you to change the
object-name of the widget. The object-name is useful for finding the widget
object programmatically, either by using the functioncg:widget or the more
generalcg:find-named-object .

This menu item may appear to be a non-selectable title for the pop-up menu, since
it is initially highlighted and contains the name of the object that you clicked on.
And unlike the other menu items, it displays the attribute' value rather than its
name. It is in fact a selectable item though.

Find Methods

Displays a menu of choices applicable to the class of the widget object.

Clone Widget

Creates a new widget of the same class as the one that you clicked on, and with
the same attribute values. The new widget will appear just below the original, at
which time you must move the clone where you want it and left-click to position
it there. The clone will be given a unique object-name so that it can always be
uniquely located programmatically using this name, but you will likely want to
provide a more meaningful object name yourself.

When cloning widgets, it's usually most efficient to first edit the attributes of the
widget, and then make the clone, since you typically won't need to change as
many attributes of the new widget this way after cloning. For radio-buttons in
particular, you can give a new cluster name to the first one, and then create clones
that will be in the same cluster automatically without having to modify each
clone's cluster attribute. (By defaultall radio buttons on the dialog will be in the
same cluster.)

You can alternately clone a whole group of widgets at once, from theWidget
Groups submenu of the Window Menu.

ALLEGRO CL for Windows: Interface Builder 3 - 3

M
enus and

m
ouse actions

Delete Widget

Destroys the widget that you clicked on. First a dialog will pop up to prompt you
for confirmation, unless you have de-selected this option on the Builder Prefer-
ences dialog. If you experience regret after deleting a widget, you can recreate it
from theUndo submenu of the Window Menu of the dialog window that the wid-
get was on.

You can alternately delete a whole group of widgets at once, from theWidget
Groups submenu of the Window Menu.

Set Attribute

Pops up a submenu of modifiable attributes for the widget that you clicked on.
These attributes correspond to the options for the functioncg:make-dialog-
item and also to the accessors with names like "dialog-item-foo" for the "foo"
attribute, so you can refer to the common graphics documentation for further
information about the actual attributes. The same set of attributes is also listed on
the Widget Editor when you display a widget there, and you can click on partic-
ular attributes in the Widget Editor list to see help strings for them in the Allegro
CL for Windows status bar.

Since there are a lot of widget attributes, they are grouped into the following fur-
ther submenus:

Main Attributes --- miscellaneous frequently-modified attributes

Class-Dependent --- attributes that apply to the class of widget that you clicked
on, but not to all classes of widgets

Event Handlers --- functions that you write and which are invoked when vari-
ous events happen to the widget

Flags --- attributes that have only two possible states, either off or on. This sub-
menu displays a check mark beside those items that are currently on.

Color --- attributes that control the color of the widget

Edge Constraints --- attributes that control how the widget is moved or resized
when its parent dialog window is resized

Box --- attributes that control the position and size of the widget

3 - 4 ALLEGRO CL for Windows: Interface Builder

Copy Attribute

Copies a selected attribute from the widget that you clicked on to one or more
other widgets, on the same or other dialog windows. You first select an attribute
from the submenu that pops up, which contains roughly the same set of attributes
as theSet Attribute item. A rubber-band line will then stretch from the widget
that you are copying from, to remind you that you are inCopy Attributes mode
and so that you can be sure that you are copying from the correct widget. You then
click on a series of other widgets in any editable dialog windows. Each widget
will change just after you click on it to reflect the copied value. To stop copying,
either right-click anywhere or do any click anywhere except on a widget. The
rubber band line and special mouse cursor will disappear to tell that you are no
longer inCopy Attributes mode.

You might watch for cues that each copy is successfully performed, because if
you click too lightly for the click to register, or if lisp is busy garbage collecting
when you click on a widget, the click can be missed. The cues include a message
printed in the Allegro CL for Windows status bar while the mouse button is down
and the mouse cursor changing back to the default arrow cursor while the mouse
button is down, as well as any change to the appearance of the widget due to the
new attribute value. If the change is not a visible one, holding the mouse down
briefly while mousing each widget provides the other cues to assure you that the
attribute has in fact been copied.

This submenu is always a pop-up rather than a cascading submenu so that it can
qualify as a previous-action-to-repeat, allowing you to pop it up again immedi-
ately by giving the repeat-previous-operation gesture (alt-right-click or middle-
click).

Reposition

Lets you change the location of the widget in certain ways. These items are most
handy if you have overlapping widgets. While the Builder prevents you from
achieving overlapping widgets by default, you can turn off this option on the
Builder Preferences dialog.

Bury --- Moves the widget to the bottom of the occlusion stack, so that if you
have overlapping widgets, this one will move behind any that overlap it. Remem-
ber that the bottommost widget will also be last in the tab order for the dialog.

Expose --- Moves the widget to the top of the occlusion stack, so that if you have
overlapping widgets, this one will appear in front of any that overlap it. Remem-
ber that the topmost widget will also be first in the tab order for the dialog.

ALLEGRO CL for Windows: Interface Builder 3 - 5

M
enus and

m
ouse actions

Move --- allows you to move the widget. While you can normally do this simply
by left-clicking in the middle of the widget, this menu item allows you to do it
even in rare instances where the middle of the widget is covered by another wid-
get or subwindow.

Resize --- allows you to stretch the lower right corner of the widget, just as you
normally would do by left-clicking its lower right corner.

Edit On Form

Selects the Widget Editor dialog and displays the widget that you clicked on, to
allow you to conveniently view or edit several attributes of the widget.

Undo

Pops up a menu with a list of operations that will undo each edit that you have
performed on the widget that you clicked on. The top item will undo the most
recent edit, and the bottom item will undo the first edit. When you select one of
the choices, that item will be removed from the widget's undo list, and a new item
to undo the undoing that you just did will be added to the top of the list.

The operations that can be undone include setting attributes of the widget (either
from the pop-up menus or the Widget Editor dialog) plus moving and resizing it.
If you accidentally delete a widget, you can recreate it from the parent dialog win-
dow's undo list.

3.3 The Window Pop-up Menu

Here are the choices on the right-button pop-up menu for windows:

Object Name

The topmost item of the window menu displays and allows you to change the
object-name of the window. The object-name is useful for finding the window
object programmatically, either by using the functioncg:window or the more
generalcg:find-named-object .

This menu item may appear to be a non-selectable title for the pop-up menu, since
it is initially highlighted and contains the name of the object that you clicked on.
And unlike the other menu items, it displays the attribute's value rather than its
name. It is in fact a selectable menu item though.

3 - 6 ALLEGRO CL for Windows: Interface Builder

Add Widget (Dialog Windows Only)

Allows you to create a widget on a dialog window, without bringing up the Wid-
get Palette. The widgets are grouped into four submenus according to their basic
functionality.

Widget Groups (Dialog Windows Only)

Performs operations on groups of widgets that you select.

Move Widgets --- allows you to move several widgets at once. The mouse cursor
switches to an arrow with a box at its tail, to indicate that you should stretch a box
around a set of widgets to indicate which ones to move. The box need only inter-
sect with each widget rather than surrounding it. Left-click (and hold) at the
upper-left corner of the region that intersects with the desired widgets, then drag
out the lower-right corner of the region and release. At this time a black rectangle
with the same size as the group of selected widgets will appear centered about the
mouse cursor. Move the mouse to position this rectangle where you would like to
move the set of widgets, and click to place them there.

Clone Widgets --- allows you to clone several widgets at once. You can think of
this process as defining a class consisting of the selected widgets and instantiating
that class on the fly. The selection of the widgets works as inMove Widgets
above.

Delete Widgets --- allows you to destroy several widgets at once. A dialog win-
dow first pops up to let you confirm the deletion, unless you turn this option off
in the Builder Preferences window. You are prompted only once for the entire set
of widgets, with the widgets listed in the dialog so that you can make sure that
you selected the correct set. You can still re-create any of the widgets individ-
ually from theUndo item on the dialog's right-button pop-up menu, in case you
accidentally include a widget that you don't want to delete. The selection of the
widgets works as inMove Widgets above.

Space Equally --- allows you to equalize the amount of space between succes-
sive widgets that are arranged roughly in a row or column. Select the set of wid-
gets as inMove Widgets above. If the box that you stretch is taller than it is wide,
then the widgets will be shifted vertically so as to make the vertical distance
between successive widgets be the same; otherwise they will be shifted horizon-
tally. The two "end" widgets remain in their current positions, and the widgets
between them are moved, so you need to select at least three widgets in order to
cause any movement. (Since neither "end" widget moves, inner distances may
differ by one pixel due to roundoff error.)

ALLEGRO CL for Windows: Interface Builder 3 - 7

M
enus and

m
ouse actions

Note that for borderless widgets such as radio-buttons and check-boxes, the wid-
gets may not appear equidistant unless they are the same size, so unless you know
they are the same size (such as if they were created by cloning) you may want to
copy the box-height attribute from one to the others before spacing them equally.

Set Tab Order --- allows you to click on a sequence of widgets to establish the
order in which they will be selected as the user presses the TAB key while the
dialog has focus. Note that the first widget in the tab order will also be the top-
most widget, and the last will be the bottommost.

A particular case where tab order is important is when you associate a static-text
widget with another widget (such as a text-edit widget), and you insert a tilde (~)
into the title of the static-text widget so that the user can use the alt key with the
character following the tilde to focus on the widget with which the static-text
widget is associated. In order for this to work, the static text widget must come
immediately before the other widget in the dialog's tab order.

When you select this item, the mouse cursor changes to a "T" with an arrowhead
at its base to remind you that you are in "Set Tab Order" mode. Click on the wid-
get that you would like to come first in the tab order, and then on successive wid-
gets. When you have clicked on all of the widgets whose tab order you care
about, exit "Set Tab Order" mode by either right-clicking anywhere or left-click-
ing anywhere except on a widget.

While clicking on the sequence of widgets, it's important to notice that each wid-
get is successfully selected. If you click too lightly for a click to register, or if the
lisp is garbage collecting at the moment, one of the widgets may be missed. If you
hold the mouse button down momentarily for each click, though, you may notice
that a message is printed in the Allegro CL for Windows status bar while the but-
ton is down, and the mouse cursor changes back to the default arrow. These cues
can reassure you that the current click wasn't missed. If you discover later that
you did miss a widget, you can always set the "Tab Position" attribute of the wid-
get that was missed rather than doing the whole "Set Tab Order" operation over
again. To do this, set the "Tab Position" attribute of the missed widget to be the
same number as the current tab position of the widget that you would like it to
proceed.

Remember that a widget will not be tabbed to at all unless itsTabstop flag
attribute is turned on.

3 - 8 ALLEGRO CL for Windows: Interface Builder

Set Attribute

Pops up a submenu of modifiable attributes for the window that you clicked on.
These attributes correspond to the options for the functioncg:open-stream ,
so you can refer to the common graphics documentation for that function for fur-
ther information about the actual attributes. Many, but not all, of these attributes
are also listed on the Dialog Editor when you display a window there, and you
can see help strings for them in the Allegro CL for Windows status bar by moving
the mouse cursor over the Window Editor widgets for particular window
attributes.

Since there are a lot of window attributes, they are grouped into the following fur-
ther submenus. Note that there are no "Event Handler" attributes as there are for
widgets, because events for windows are handled by CLOS methods rather than
functions that are placed on individual objects as they are for widgets. So you still
need to keep track of where you define your window event methods separately.

Main Attributes --- miscellaneous frequently-modified attributes

Startup State --- pops up a menu to set the state of this window to be normal,
shrunk (invisible), icon, maximized, or pop-up. Pop-up is applicable only if the
window is a dialog. This attribute affects only the state that the window will have
when it is later recreated by the lisp code that the Builder generates for this win-
dow. It doesn't change the current state of the window since the window needs to
remain in normal state during editing. That's why this attribute is called "Startup
State" even though the correspondingcg:open-stream option has the differ-
ent name:window-state .

Flags --- attributes that have only two possible states, either off or on. This sub-
menu displays a check mark beside those items that are currently on.

Edge Constraints --- attributes that control how the window is placed with
respect to its parent.

Size/Position --- attributes that modify the size or position of the window. This
submenu is handy if you have turned the Resizable or Movable flag attributes off
for a window and therefore can't resize or move it from its frame.

Code

Lets you manage the Lisp source code that the Builder automatically generates to
programmatically recreate the window as it was created interactively with the
Builder.

ALLEGRO CL for Windows: Interface Builder 3 - 9

M
enus and

m
ouse actions

Code Filename --- lets you enter a new pathname to save the window's code to.
You may not need to use this item at all, since when you save the window for the
first time you will be prompted for a pathname if you haven't established one yet.
This item is useful later, though, if you want to change the pathname where the
window is saved.

Save Code to File --- generates the lisp code to recreate the window that you
clicked on along with any subwindows or widgets, and saves it to a standard lisp
source code file. If you have not yet established the pathname to save this win-
dow to, you are prompted for it at this time. A shortcut for this operation is to hold
down the control key and left-click the background of the window while it is in
edit mode. You may want to save your edited windows fairly often, just as you
do the lisp code that you write in lisp-edit windows.

View Code File --- brings up a lisp-edit window containing the contents of the
file where the Builder wrote the auto-generated lisp code for recreating this win-
dow and its children. You can further edit this code textually, and still be able to
edit the result once again with the Builder. But remember that after editing the
source code textually you must evaluate the code and then use it to recreate the
window programmatically before editing the window again with the Builder, and
after editing graphically with the Builder you must use the Builder to save the
window to its file before editing it textually again.

Note that if the lisp-edit window for an edited window remains open while you
further edit the window interactively with the Builder, and you then save the win-
dow with the Builder, and then select thisView Code menu item to view the code,
then the existing lisp-edit window will simply be exposed with the out-of-date
source code. In this case you need to close the lisp-edit window and select the
View Code File item once again to see the newly-saved code.

Reload from Code File --- destroys the window that you are editing along with
its children, and recreates it by loading the lisp source code file that it is saved to
and calling the function from this source code file that recreates the window. This
is useful for reverting the window to the state that it and its subwindows or wid-
gets were in when you last saved it.

Reload from Backup File --- whenever you use the Builder to save a window to
its file, which is typically a.lsp file, the file is first copied to another file with the
same name except for a.bak extension, and then the window is saved to the.lsp
file. This menu item allows you to revert to the backup file, which reflects the
state of the window when you did the second-most-recent save.

3 - 10 ALLEGRO CL for Windows: Interface Builder

Miscellaneous

Various things you can do to or find about the window, includingFind Methods (which
provides choices relating to the class of the window) and the following:

Clone Window -- Creates a new window of the same class as the one that you
clicked on, and with the same attribute values. Any subwindows of the window
are also cloned and placed into the new window. If the window is a dialog, then
each of its widgets is cloned as well. The set of cloned objects is completely inde-
pendent of the original. The clone of the window that you moused will be given
a unique new object-name so that it can be distinguished programmatically from
the original even if you don't change the object-name yourself, but any cloned
subwindows or widgets will retain their original object-names since their names
are still unique with respect to their siblings.

Set Parent Window-- Allows you to create an arbitrary hierarchy of windows
by clicking on a new parent window for this window. The window will be posi-
tioned in the new parent with its top left corner where you click, and then moved
if needed so that it doesn't extend outside of the new parent's interior (or outside
of its scrollable extent if the parent is scrollable).

If you move a window onto another editable window this way, then the only win-
dow that you need to save to file is the parent, since subwindows are saved auto-
matically when their parent is saved.

One limitation is that you can't change the parent of a window that lies on
screen , and you can't change the parent of other windows to be*screen* .
If you need to do this, then toggle theTop-Level-P flag attribute of the window,
which will recreate the window on*screen* if it wasn't already, or on
lisp-main-window if it was on*screen* .

Delete Window-- Destroys the window that you clicked on and any subwindows
or widgets. A dialog first pops up to allow you to confirm deletion, unless you
turn this option off in the Builder Preferences dialog. There is no "undo" capabil-
ity to recreate a deleted window.

Undo -- Pops up a menu with a list of operations that will undo each edit that you
have performed on the window that you clicked on. The top item will undo the
most recent edit, and the bottom item will undo the first edit. When you select one

ALLEGRO CL for Windows: Interface Builder 3 - 11

M
enus and

m
ouse actions

of the choices, that item will be removed from the window's undo list, and a new
item to undo the undoing that you just did will be added to the top of the list.

The operations that can be undone include setting attributes of the window plus
(if this is a dialog window) recreating any widgets that you deleted from this win-
dow.

Run Window

Another way to make the window runnable rather than editable.

Edit On Form

Selects the Window Editor dialog and displays the window that you clicked on,
to allow you to conveniently view or edit several attributes of the window.

Edit Menu Bar

Selects the Menu Editor dialog and displays the menu bar for the window that you
clicked on, to allow you to edit the menu bar for this window. If the window has
not yet been given a menu bar, a default "starter" menu hierarchy is shown on the
Menu Editor that you can use as a template for creating your own menu. (If the
actual menu does not appear on your window after applying your edits from the
Menu Editor, the probable reason is that your window needs to have the Top-
Level-P flag attribute turned on, since only top-level-windows (lying directly on
screen) can have menu bars.)

3.4 Other mouse actions

In addition to the right-button menus, other mouse clicks (sometimes combined with shift
keys) can be used to perform common editing tasks. The actions differ somewhat depend-
ing on whether you click a widget or a window.

By default, when you move the mouse cursor over a window or widget where the win-
dow is in edit mode, the actions for each type of click are displayed in the Allegro CL for
Windows status bar as a reminder. After you become familiar with these actions, though,
you may want to turn this behavior off by deselecting theObject-Under-Mouse item on
the Builder Preferences window, because these messages cover over a lot of other informa-
tional messages that the Builder displays in the status bar after performing various opera-
tions.

3 - 12 ALLEGRO CL for Windows: Interface Builder

Left-Click : Move or Resize Widget

When you left-click a widget, you can then either move it or stretch it in one or
two directions, depending on what point on the widget the mouse cursor is over
when you click. The mouse cursor changes as you move it over the widget to indi-
cate which operation would occur at that point. Basically a move is possible in
the middle of the widget, stretching in two directions simultaneously is possible
near the corners of the widget, and stretching in one direction only is possible
near the middle of the widget's edges.

When you left-click the background of a window, the window is simply selected
and redisplayed.

Control-Left-Click : Find Widget Code, or Save Window Code

When you hold down the control key and left-click a widget, it does a find-defi-
nition on the widget's set-value-fn. This is a short cut forSet Attribute --> Event
Handlers --> Set-Value-Fn on the widget's right-button pop-up menu. (If you
group your lisp code together for all of the event handlers of a given widget, then
you could effectively locate all of it with this shortcut and avoid the pop-up
menu.)

When you click the background of a window instead, the source code for recre-
ating it will be written to its file. This is a shortcut forCode --> Save Code to
File on the right-button window pop-up menu.

Alt-Left-Click : Edit On Form

When you hold down the alt key and left click either a widget or a window, the
special Builder dialog for editing the attributes of that object will be selected and
will display that object for editing. This is a shortcut for theEdit on Form item
of the right-button pop-up menus.

Control-Right-Click or Middle-Click : Repeat Previous Edit

When you either middle-click (if your mouse has three buttons) or hold down the
control key and right-click a widget, the most recent edit that you performed on
any widget will be repeated on the newly-clicked widget.

When you click a window's background instead, the most recent edit that you per-
formed on any window will be repeated on the newly-clicked window.

By default, the particular action that will be repeated will be included in the Alle-
gro CL for Windows status bar message that is displayed as you move the mouse
over widgets and windows that are in edit mode.

ALLEGRO CL for Windows: Interface Builder I - 1

Index

Index

A
Add Window (window pop-up menu item) 3-6
Alt-Tab key combination

does not work when mouse is over dialog being edited 1-3

B
.bml file 2-19
.bmp file 2-19
Builder menu 1-2
builder preferences

Interface Builder dialog 1-4

C
Clone Widget (widget pop-up menu item) 3-2
Clone Window (window pop-up menu Miscellaneous submenu item) 3-10
code

how to save code 2-11
Code (window pop-up menu item) 3-8
Copy Attribute (widget pop-up menu item) 3-4
creating a dialog (or other window) with the IB 2-1

D
Delete Widget (widget pop-up menu item) 3-3
Delete Window (window pop-up menu Miscellaneous submenu item) 3-10
dialog-item

means the same thing as widget 1-3
dialogs

saving code for generating 2-11

E
Edit Menu Bar (window pop-up menu item) 3-11
edit mode (in the Interface Builder) 2-2

defined 1-3

I - 2 ALLEGRO CL for Windows: Interface Builder

Edit On Form (widget pop-up menu item) 3-5
Edit On Form (window pop-up menu item) 3-11
edit-action (generic function, builder package) 2-21
event handlers

setting for widgets 2-9

F
Find Methods (widget pop-up menu item 3-2
Find Methods (window pop-up menu Miscellaneous submenu item) 3-10

G
get-dialog (function, builder package) 2-21
get-widget (function, builder package) 2-20
get-window (function, builder package) 2-21

H
how to create a dialog (or other window) with the IB 2-1

I
IB (abbreviation for Interface Builder) 1-1
ibprefs.lsp (IB preferences file) 1-5
.ico file 2-19
interface builder

ibprefs.lsp -- the preferences file 1-5
introduction 1-1
mouse actions 3-11
preferences dialog 1-6

interface builder dialogs
builder preferences 1-4
menu editor 1-4
widget editor 1-4
widget palette 1-4
window editor 1-4

Interface Builder Preferences (Preferences menu choice)
displays Interface Builder Preferences dialog 1-4

ALLEGRO CL for Windows: Interface Builder I - 3

Index

M
menu bars

are only visible on top-level windows 1-4
menu editor

Interface Builder dialog 1-4
menus

editing 2-12
right button menu 3-1
right button menu over widgets 3-2
right button over windows 3-5

Miscellaneous (window pop-up menu item) 3-10
mouse actions

in Interface Builder 3-11

O
Object Name (widget pop-up menu item) 3-2
Object Name (window pop-up menu item) 3-5

P
picture-button

saving associated bitmap 2-19
pictures

saving bitmaps 2-19

R
Reposition (widget pop-up menu item) 3-4
right mouse button

cannot be used to choose menu items in IB 1-4
run mode (in the Interface Builder) 2-4

defined 1-3
Run Window (window pop-up menu item) 3-11

S
saving code for edited window 2-11
Set Attribute (widget pop-up menu item) 3-3
Set Attribute (window pop-up menu item) 3-8
Set Parent Window (window pop-up menu Miscellaneous submenu item) 3-10

I - 4 ALLEGRO CL for Windows: Interface Builder

set-value-fn
why it is important 1-3

static-picture
saving associated bitmaps 2-19

status bar
essential when using the IB 1-3

sticky alignment of widgets 2-6

U
Undo (widget pop-up menu item) 3-5
Undo (window pop-up menu Miscellaneous submenu item) 3-10

W
widget

event handlers, setting 2-9
means the same thins as dialog-item 1-3

widget (function, common-graphics package) 2-22
widget editor

Interface Builder dialog 1-4
Widget Groups (window pop-up menu item) 3-6
widget palette

Interface Builder dialog 1-4
widget pop-up menu 3-2

Clone Widget 3-2
Copy Attribute 3-4
Delete Widget 3-3
Edit On Form 3-5
Find Methods 3-2
Object Name 3-2
Reposition 3-4
Set Attribute 3-3
Undo 3-5

widgets
sticky alignment 2-6

window (function, common-graphics package) 2-22
window editor

Interface Builder dialog 1-4

ALLEGRO CL for Windows: Interface Builder I - 5

Index

window pop-up menu 3-5
Add Widget 3-6
Clone Window (on Miscellaneous submenu) 3-10
Code 3-8
Delete Window (Miscellaneous submenu) 3-10
Edit Menu Bar 3-11
Edit On Form 3-11
Find Methods (Miscellaneous submenu) 3-10
Miscellaneous 3-10
Object Name 3-5
Run Window 3-11
Set Attribute 3-8
Set Parent Window (Miscellaneous submenu) 3-10
Undo (Miscellaneous submenu) 3-10
Widget Groups 3-6

windows
editing 2-14

I - 6 ALLEGRO CL for Windows: Interface Builder

[This page intentionally left blank.]

Debugge

Allegro CL for
Windows

Foreign Function
Interface

version 3.0

October, 1995

Copyright and other notices:

This is revision 2 of this manual. This manual has Franz Inc. document number D-U-00-
PC0-06-51018-3-2.

Copyright 1994, 1995 by Franz Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means
electronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademarks of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, Windows 95, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Foreign Function Interface c - 1

Contents

1 Introduction and some examples
16-bit DLL’s cannot be linked to Windows 95 or NT images 1-1

1.1 Two examples 1-1
Example 1: simple calls to C functions 1-2
Example 2: calling back from C to Lisp 1-5

1.2 Accessing a C string from Lisp 1-7

2 FFI functionality
2.1 Defining DLL’s to Lisp 2-1
2.2 Defining lisp functions to process callbacks 2-2
2.3 Mapping C data types and structures 2-2
2.4 Different views of data 2-3
2.5 32-bit and 16-bit DLL’s 2-4

3 Reference guide
3.1 C Type Specifications 3-1

Examples 3-3
3.2 Functions, macros, variables, etc. 3-3

4 DDE interface
Example 4-1

4.1 Client functionality 4-2
Creating a port where Lisp is the DDE client 4-2
Example: 4-2
Functionality 4-3

4.2 Server functionality 4-5

5 Windows typedefs and API’s
Typedefs 5-1
Allegro CL access to Win32 API 5-2

Index

c - 2 ALLEGRO CL for Windows: Foreign Function Interface

[This page intentionally left blank.]

ALLEGRO CL for Windows: Foreign Function Interface 1 - 1

Introduction

Chapter 1 Introduction and
some examples

Allegro CL for Windows allows Lisp functions to call many of the Win32 API functions
and any functions in C-coded dynamic link libraries (DLLs), and provides a mechanism to
define callback functions in Lisp code. The functions and macros that support this capabil-
ity are collectively called theForeign Function Interface (FFI). The FFI defines a mapping
between Lisp and C data formats and includes macros for defining C-style structures. This
allows Lisp programs to build structures for C functions and to access components of C
structures outside the Lisp heap.

Most symbols associated with the foreign function interface are in thec-types pack-
age, nicknamedct .

16-bit DLL’s cannot be linked to Windows 95 or NT images
When you run Lisp under Windows 95 or Windows NT, only 32-bit DLL’s can be linked to
the image. 16-bit DLL’s are not supported. 16-bit DLL’s can be linked to images running
under Windows 3.1 or Windows for Workgroups.

1.1 Two examples

The first example illustrates calling a simple C function from Lisp. The second example
illustrates defining Lisp callbacks. Online copies of all files can be found in the directory
ex\ffi32 included with the distribution.

1 - 2 ALLEGRO CL for Windows: Foreign Function Interface

Example 1: simple calls to C functions
The following file, namedtstdll32.c, defines three simple functions (after the necessary
LibMain definition):

• sum_ii() , which takes two integers and returns their sum;

• diff_ii() , which takes two integers and returns the result of subtracting the
second from the first;

• stringchar() , which takes a pointer to a string and an integer.and returns the
integer value of the ASCII representation of the character at the location specified
by the integer.

These are, of course, fairly trivial examples. There is no reason to call a C function to
add or subtract two numbers. The point is that the C function can do anything you want. All
that is really being illustrated is (1) how a C function is called from Lisp, and (2) how the
value returned by the C function is received by Lisp. Whatever your C function does, it
must be called by Lisp, just as our simple function is called, and it will return something
which Lisp may want to use, again, as happens in our example.

After the listing oftstdll.c, thetstdll.def file is listed.

// source file tstdll32.c
#include <windows.h>
BOOL WINAPI LibMain(HANDLE hinst, DWORD rsn, LPVOID ignore)
{
 return TRUE;
}
int WINAPI sum_ii(int i, int j)
{
 return i + j;
}
int WINAPI diff_ii(int i, int j)
{
 return i - j;
}
int WINAPI stringchar(char *sp, int i)
{
 return sp[i];
}

ALLEGRO CL for Windows: Foreign Function Interface 1 - 3

Introduction

// end of tstdll32.c

// source file tstdll32.def
LIBRARY tstdll32
DESCRIPTION '32-bit test dll for acl\nt'
EXPORTS sum_ii
 diff_ii
 stringchar
 dynamic_wrapper
// end of tstdll32.def

The.c and.def files are compiled and linked intotstdll32.dll file. We now link this DLL
into Lisp and call the various functions from Lisp. Here are what we do:

1. We define a parameter that shows the location of the DLL. Note that we specify
the full path of the file. If you are imitating this procedure, you would use the path
of your file, which is likely different.

(defparameter hlib "f:\\aclnt\\test\\dll\\tstdll32.dll")

2. We now define a Lisp function,sum-ss , that passes two integer arguments to
the C functionsum_ii and interprets the result as a short integer:

(ct:defun-dll sum-ss ((x :short) (y :short))
 :return-type :short
 :library-name hlib
 :entry-name "sum_ii")

We can now callsum-ss :

(sum-ss 1 2) → 3
(sum-ss 1 -2) → -1

Bet we have to pass shorts. If we try to pass 40000 (which is not a short), we get
an error:

(sum-ss 40000 10000) → ERROR

3. sum_ii actually accepts 32-bit integer arguments. The Lisp call failed when
passing 40000 because Lisp was told (in the call toct:defun-dll) that the
arguments were shorts. We can define another Lisp function that also links to
sum_ii which accepts 32-bit integers:

1 - 4 ALLEGRO CL for Windows: Foreign Function Interface

(ct:defun-dll sum-ll ((x :long) (y :long))
 :return-type :long
 :library-name hlib
 :entry-name "sum_ii")

We can callsum-ll with larger numbers:

(sum-ll 32768 32768) → 65536
(sum-ll -32768 -32) → -32800

Why did we bother to definesum-ss in the first place whensum-ll accepts all the
argumentssum-ss does and more? The reason is that short integers are fixnums in Lisp,
while long integers can be fixnums or bignums. Bignum arithmetic is much less efficient
that fixnum arithmetic. If you know a C function will be called only with short integer argu-
ments, it is more efficient to define the corresponding Lisp function that way.

Similarly, we can link todiff_ii() with Lisp functions (again, we define a version
which accepts shorts and a version which accepts longs)

(ct:defun-dll diff-ss ((x :short) (y :short))
 :call-mode :c; this is the default
 :return-type :short
 :library-name hlib
 :entry-name "diff_ii")

(ct:defun-dll diff-ll ((x :long) (y :long))
 :return-type :long
 :library-name hlib
 :entry-name "diff_ii")

Now we can call these functions:

(diff-ss 7 4); → 3
(diff-ll 60000 40000); → 20000

In this final example, we demonstrate passing strings to C functions. We defined the
functionstringchar() . We will define a Lisp function that passes a string and an inte-
ger tostringchar() and gets back the ASCII value of the character in the string posi-
tion indicated by the integer.

ALLEGRO CL for Windows: Foreign Function Interface 1 - 5

Introduction

(ct:defun-dll echar ((s (:char *)) (y :short))
 :return-type :unsigned-char
 :library-name hlib
 :entry-name "stringchar")

Here we call the new Lisp function (97 is a ASCII code for lowercase ‘a’; position 3 is
after the end of the string, so the value is 0 since the C string is null-terminated):

(echar "abc" 0) → 97
(echar "abc" 3) → 0

So, all you have to do to link Lisp to a C function defined in a DLL is define a Lisp func-
tion that will call the C function.ct:defun-dll does the definition. It needs to be told
the number and types of arguments that will be passed to the C function and what to expect
the C function to return.

Example 2: calling back from C to Lisp
There is a not a lot to simply calling a C function and getting a return value. More compli-
cated is calling a C function which itself calls back to Lisp. To do this, we have to define
the Lisp function that will be called from C.

Her is the C code. It is in the filesdlltst32.c anddlltst32.def

// source file for dlltst32.c
#include <windows.h>
typedef DWORD (WINAPI FAR *LISPCBPROC)(LPVOID,DWORD);
BOOL WINAPI LibMain(HANDLE hinst, DWORD dwrsn, LPVOID ignore)
{
 return TRUE;
}

int WINAPI call_callback(int (*pcb)(int,int,int),
 int a, int b, int c)
{
 return (*pcb)(a,b,c);
}
// end of dlltst32.c

// source file dlltst32.def

1 - 6 ALLEGRO CL for Windows: Foreign Function Interface

LIBRARY dlltst32
DESCRIPTION '32-bit ffi test dll'
EXPORTS call_callback
// end of dlltst32.def

First we create a variable that holds the location of the DLL. Note that the full path of the
file is given. If you are trying this example, your path will likely be different.

(defvar tlib "f:\\aclnt\\uthunk\\dlltst32.dll")

Now we define a variable which will hold information placed there by the Lisp function
that is called from C, and define several functions that are candidates to be called from C.
The first two put information in the variable just defined. The third signals an error.

(defvar *cb-stack* nil)

(ct:defun-callback cb1 ((a :long) (b :long) (c :long))
 (push (list 'cb1 a b c) *cb-stack*)
 (+ a b c)); returning an integer is ok

(ct:defun-callback cb2 ((a :long) (b :long) (c :long))
 (push (list 'cb2 a b c) *cb-stack*)
 (+ a b c))

(ct:defun-callback cb3 ((a :long) (b :long) (c :long))
 (error "an error in a callback"))

Now we define the function,ccb , that will call the C function (that in turn will do the
callback).

(ct:defun-dll ccb ((pf (:void *)) (a :long) (b :long) (c :long))
 :call-mode :c
 :return-type :long
 :library-name tlib
 :entry-name "call_callback")

Finally, we define the functionc , which selects the function that will be called back to,
and then callsccb .

ALLEGRO CL for Windows: Foreign Function Interface 1 - 7

Introduction

(defun c (n i j k)
 (ccb (ct:get-callback-procinst n) i j k))

We initialize*cb-stack* and try some calls.

(setq *cb-stack* nil)

(c 'cb1 1 2 3) → 6
(c 'cb2 4 5 6) → 15
(c 'cb3 7 8 9) → INVOKES AN ERROR

1.2 Accessing a C string from Lisp

It is not possible to return a string from a C function which is called from Lisp. C and Lisp
represent strings slightly differently. In this section, we describe how to call a C function
one of whose arguments is a pointer to a string. Assuming that the C function fills the string,
we show how Lisp can access the filled string.

To call a C function that takes a pointer to a string as one of its arguments and then fills
in the contents of the string, useccallocate to create a character vector of the maximum
required size, as in (this is for strings up to 256 characters in length):

(setq foo (ct:ccallocate (ct:char 256))

Pass this value as thestring argument to the C function. Once the C function has
returned, you can convert the string to a proper Lisp string object with:

(subseq foo 0 (ct:strlen foo))

 Herect:strlen returns the length of the null-terminated character vector as filled in by
the C function. A new Lisp string is returned by the call tosubseq .

Alternately, you can reference individual elements of the returned string without consing
a new Lisp string by usingct:cref :

(cref (ct:char *) foo 3)

The above form will return the integer contained at byte 3 of the vector. You can use
int-char to convert it to an actual Lisp character if desired.

1 - 8 ALLEGRO CL for Windows: Foreign Function Interface

[This page intentionally left blank.]

ALLEGRO CL for Windows: Foreign Function Interface 2 - 1

F
F

I
functionality

Chapter 2 FFI functionality

The macros, functions, and variables in the FFI are listed here and described in more detail
in chapter 3.

2.1 Defining DLL’s to Lisp

ct:defun-dll macro defines a foreign function to be
called from lisp

ct:list-dll-libraries function returns list of referenced DLL
libraries

ct:rename-dll-libraries function changes names of DLL libraries

ct:unlink-dll-functions function forces reloading of DLLs

ct:unlink-dll function forces reloading of a specific
DLL

ct:dll-handle function returns the library handle of a
DLL

2 - 2 ALLEGRO CL for Windows: Foreign Function Interface

2.2 Defining lisp functions to process callbacks

ct:defun-callback macro defines a c-callable lisp function

ct:default-callback-style variable argument style for callback (C or
pascal)

ct:defun-c-callback macro overrides default-callback-style

ct:defun-pascal-callback macro overrides default-callback-style

ct:get-callback-procinst function returns a pointer C can use to call
the function

2.3 Mapping C data types and structures

ct:defctype macro defines a name for a C type

ct:defcstruct macro describes a C structure type

ct:defshandle macro defines a new short handle type

ct:deflhandle macro defines a new long handle type

ct:*export-c-names* variable controls auto export of ctype
names

ct:callocate macro allocates C data in the heap at
runtime

ct:ccallocate macro allocates C data in the heap at
compile time

ct:cref macro access field of C-type object

ct:cset macro set field of a C-type object

ct:csets macro set multiple fields of a C-type
object

ct:far-peek function copies data from a foreign loca-
tion to a Lisp location.

ct:far-poke function copies data from a Lisp location
to a foreign location.

ALLEGRO CL for Windows: Foreign Function Interface 2 - 3

F
F

I
functionality

ct:hnull variable a long cpointer with null C value

ct:sizeof macro length of a C type

ct:strlen function length of heap-allocated C string

ct:handle-value macro get or set the handle value of a
lisp handle

ct:handle= macro compare two handles to see if
they have equal values

ct:null-handle macro expands to a null handle object

ct:null-handle-p macro test if a handle is a C null handle

ctcpointer-value macro value of cpointer as an integer

ct:null-cpointer-p macro test if a cpointer is a C null

:void keyword builtin C type

:char keyword builtin C type

:unsigned-char keyword builtin C type

:short keyword builtin C type

:unsigned-short keyword builtin C type

:long keyword builtin C type

:unsigned-long keyword builtin C type

:short-bool keyword builtin C type

:long-bool keyword builtin C type

:single-float keyword builtin C type

:double-float keyword builtin C type

:short-handle keyword builtin C type

:long-handle keyword builtin C type

2.4 Different views of data

In C, data is what the program finds in a storage area. The storage area can be seen as a
place that holds a string of bits of some fixed size. The bit string can be interpreted as a
sequence of fields of varying types and sizes (characters, signed or unsigned integers,

2 - 4 ALLEGRO CL for Windows: Foreign Function Interface

floats, or pointers to other storage areas) depending on the type declarations and casts in the
C program. By using explicit type casts the program can interpret any data in any way the
programmer desires.

Data items are found in storage in Lisp, as well. But Lisp items are best thought of as
objects. Each has a header that defines its type unambiguously, and the opportunities for
overriding Lisp's idea of an object's type are severely limited. Furthermore, Lisp's memory
management may move an object from one area of memory to another at any time, adjust-
ing all references to that object to point to the new location.

When Lisp calls a C function that expects a long integer argument and returns a float
result, the FFI must convert the supplied argument from Lisp format to C format, push the
converted value onto the stack and transfer control to the C function's entry point. When
the C function returns, the FFI must convert the return value from C format to Lisp format.
Lisp data is always tagged with its type, so a Lisp function definition doesn't need to include
type declarations for the arguments and return value. C data is not tagged, so function def-
initions need type declarations.

2.5 32-bit and 16-bit DLL’s

Allegro CL can call functions in 32-bit (Win32) DLL’s when running under any ver-
sion of Windows. It can call functions in 16-bit (Windows 3.1) DLL’sonly when run-
ning under Windows 3.1 or Windows for Workgroups. The remainder of this section
applies only to the latter case.

When 16-bit DLL’s are supported, the adjustment is handled by using the:16-bit key-
word in thedefun-dll macro and setting*default-callback-style* to the cor-
rect value. Two areas of concern for the programmer, however, are pointers and handles.

Everything works smoothly when calling a 32-bit DLL. The DLL is mapped into Lisp’s
address space and pointers are 32-bit addresses in this space. The DLL and Lisp both use
the 32-bit API to allocate and transmit handles, so there is no confusion as to their meaning.

16-bit DLL’s, however, use pointers in the 16-bit segment-offset form. Passing the
address of an object in the Lisp heap as an argument requires converting the 32-bit address
to a 16:16 pointer that maps to the same virtual memory. The FFI handles this, but only if
it knows the argument is a pointer. It cannot now perform the mapping on fields within a
structure when the structure is to be passed as an argument.

ALLEGRO CL for Windows: Foreign Function Interface 3 - 1

F
F

I
R

eference

Chapter 3 Reference guide

This chapter gives the formal definitions of the functions, macros, etc. used by the foreign
function interface. Most symbols naming objects in the foreign function interface are in the
c-types package, nicknamedct .

3.1 C Type Specifications

When supplying data to and using data from foreign functions we use Lisp symbols and
lists calledc-type-specs to describe the format of the data. Each c-type-spec describes both
the data layout and interpretation for the foreign function and the Lisp representation of that
foreign data.

A c-type-spec can be defined recursively as we now describe. First, the table shows the
primitive building blocks and then we describe how compound specs can be created.

c-type-spec Description
Corresponding Lisp

value

:void appears in (:void *) or to specify no
return from a C function

nil

:char 8-bit signed integer value Lisp integer

:unsigned-char 8-bit unsigned integer value Lisp integer

:short 16-bit signed integer value Lisp integer

:unsigned-short 16-bit unsigned integer value Lisp integer

:long 32-bit signed integer value Lisp integer

3 - 2 ALLEGRO CL for Windows: Foreign Function Interface

Plus, any type defined bydefctype , defcstruct , defshandle , or deflhandle .
(All these macros are defined below.)

The following compound types are also c-type-specs:

(c-type-spec integer)

A vector ofinteger occurrences ofc-type-spec

(c-type-spec *)

A 32-bit near pointer to an occurrence ofc-type-spec

(c-type-spec **)

A 16:16 far pointer to an occurrence ofc-type-spec

(c-type-spec mod1 mod2 ... modn)

where eachmodi is an integer,* , or ** . This is equivalent to

(... ((c-type-spec mod1) mod2) ... modn)

:unsigned-long 32-bit unsigned integer value Lisp integer

:short-bool 16-bit value treated as false if and
only if it is 0

nil or t (0 maps to
nil)

:long-bool 16-bit value treated as false if and
only if it is 0

nil or t (0 maps to
nil)

:single-float 32-bit single-float value Lisp float value

:double-float 64-bit double-float value Lisp float value

:short-handle 16-bit handle and 8-bit tag (for 16-
bit DLL’s) [16-bit DLL’s are not
supported when running under Win-
dows 95 or Windows NT.]

short-handle (a
distinct Lisp data type)

:long-handle 32-bit handle with a 16-bit type tag long-handle (a
distinct Lisp data type)

c-type-spec Description
Corresponding Lisp

value

ALLEGRO CL for Windows: Foreign Function Interface 3 - 3

F
F

I
R

eference

These map to Lisp strings or cpointers, depending on the context.

Examples
(:char *) is a 32-bit near pointer to an 8-bit byte, such as is appropriate to
describe a string argument.

(:short 10) is a 20-byte vector of 10 signed shorts.

(:long-bool * 2) is an 8-byte vector of 2 32-bit near pointers to 32-bit C
booleans.

3.2 Functions, macros, variables, etc.

The definitions are in alphabetical order.

callocate [Macro]

Arguments: c-type-spec &rest inits

Package: c-types

ccallocate [Macro]

Arguments: c-type-spec &rest inits

Package: c-types

■ These macros expand into forms that produce instances of c-type objects.cal-
locate produces code that allocates a new instance each time the code is evalu-
ated.ccallocate produces code that allocates the instance once at compile time,
effectively producing a quoted constant in the code (thusconstantcallocate). The
inits are alternating slotnames and values for initializing components of the
object. Forcallocate the initializations are performed each time the code is eval-
uated. Forccallocate they are performed once, at compile time. In either case
the objects are allocated as Lisp objects in the Lisp heap.
■ c-type-spec is the c-type-spec of the desired object.
■ Theinits argument should be alternating field names and values. Ifc-type-
spec names a C structure then the structure's field names are all acceptable. Two
pseudo fieldnames,:size and :initial-value , are sometimes allowed.
:size is used with vectors and cstructures to specify a size determined at execution
time. :initial-value is used with cpointers and handles to set the value.

3 - 4 ALLEGRO CL for Windows: Foreign Function Interface

cpointer-value [Function]

Arguments: cpointer

Package: c-types

■ This function returns the 32-bit pointer contained in the cpointer object. The
value is returned as an integer. This form issetf able.cpointer can be a 16:16
or a 32-bit cpointer.

cref [Macro]

Arguments: ctype object access &optional value-object
value-type alt-value-object

Package: c-types

■ This macro extracts and returns a field value or address from a cstructure or array.
cref is setf able. The arguments are as follows:

Argument Description

ctype The ctype of the object from which a field is to be
extracted. This must be a pointer, array, or cstructure
type.

object A form evaluating to an object compatible with ctype.
Compatibility is defined in the table below this table.

ALLEGRO CL for Windows: Foreign Function Interface 3 - 5

F
F

I
R

eference

access Can be:

• a symbol naming a field of the structure ctype,

• aninteger selecting an element of a vector ctype

• the symbol* dereferencing a cpointer ctype

• the symbol ct:& selecting the address of the ctype
data,

• the symbolnil selecting the entire ctype object,

• or a list whose elements provide, from right to left, a
selection sequence from object to the desired element.
Each element can be any of the above or a list of the
form (fixnum form) or (integer form), except that
ct:& , if it appears, must be last.

Example:(a * b (fixnum i) ct:&) would say
that starting with a cstructure, grab the contents of the
field nameda, a pointer, dereference the pointer to get
to another cstructure, select that structure'sb field to
get a vector of whatever, select the i-th element of that
vector, return the address of that element.

value-object If this is omitted, the macro expansion allocates an object
of the appropriate type and destructively overlays it with
the data selected by the access path. If avalue-object
form is included in thecref macro it must evaluate to an
object of the correct type. In either case thecref form
returns this object oralt-value-object or an equiva-
lent fixnum.

value-type This can be coded as a ctype compatable with the type of
the selected field as determined fromctype and
access . It can also be one ofcharacter or string .
The former causes an integer field to be converted to a
character by applyingint-char . The latter causes char-
acters to be copied from the selected field to the destina-
tion object up to the first null.

Argument Description

3 - 6 ALLEGRO CL for Windows: Foreign Function Interface

The following table shows the Lisp objects compatible with various ctypes. The value of
theobject argument should be a form that evaluates to a Lisp object compatible to the
ctype argument.

cset [Macro]

Arguments: ctype object access value-object &optional
value-type

Package: c-types

■ Evaluating this macro stores a value into a field of the ctype object. The argu-
ments are as follows:

alt-value-object This should be omitted unless the field being extracted is
defined as an:unsigned-long . Then value-object must
be omitted or coded as(make-bignum 2) andalt-
value-object must be omitted or coded as
(make-bignum 4) .

ctype Compatible Lisp objects

cstructure-type • a Lisp cstructure with matching tag,

• a Lisp cpointer to such a cstructure,

• a Lisp string at least as long as the cstructure

(cstructure-type *) a Lisp cstructure with a matching tag

(cstructure-type **) • a Lisp cpointer to such a structure,

• a Lisp string at least as long as cstructure

Argument Description

ctype A c-type-spec, as forcref .

Argument Description

ALLEGRO CL for Windows: Foreign Function Interface 3 - 7

F
F

I
R

eference

csets [Macro]

Arguments: ctype object &rest accesses-and-values

Package: c-types

■ This macro is a multi-field version ofcset . The arguments are as follows:

default-callback-style [Variable]

Package: c-types

object A form evaluating to an object compatible withctype .
Compatibility is as forcref above.

access An access item or list, as forcref exceptct:& is not
permitted.

value-object A form that evaluates to the object whose value is to be
stored in the selected field ofobject .

value-type Can becharacter or string . The former causes the
conversion of a character-valuesvalue-object via
char-int . The latter causes characters to be copied up
to a null byte.

Argument Description

ctype A c-type-spec, as forcset .

object A form evaluating to an object compatible withctype .
Compatibility is as forcref above.

access-and-values a sequence of alternating access specifications and value-
object forms. The value forms are evaluated and assigned
to the designated fields in sequence.

Argument Description

3 - 8 ALLEGRO CL for Windows: Foreign Function Interface

■ The value of this global variable determines the type of callback constructed by
defun-callback . Legal values are

:c -- 32-bit caller using C calling conventions

:pascal --32-bit caller using Pascal calling conventions

:c-16 -- 16-bit caller using C calling conventions

:pascal-16 -- 16-bit caller using Pascal calling conventions

■ 16-bit DLL’s are not supported when running under Windows 95 or NT.

defcstruct [Macro]

Arguments: name-and-props field-specs &optional tag

Package: c-types

■ Evaluating this macro defines a new structure c-type, naming and describing its
fields. The name becomes a valid c-type-spec. The fields can be used withcref ,
cset , andcsets . Objects of the new cstruct type allocated in the Lisp heap are
tagged to support argument validation. The arguments are as follows:

Argument Description

name-and-props Either a symbol, naming the cstructure type, or a list of
the form(name :pack alignment) wherename is
the symbol naming the structure type andalignment is
either 1, 2, or 4. Leaving alignment unspecified is the
same as specifying it as 1. The value used for alignment
affects the insertion of padding between fields of certain
types.

ALLEGRO CL for Windows: Foreign Function Interface 3 - 9

F
F

I
R

eference

defctype [Macro]

Arguments: name c-type-spec

Package: c-types

■ This macro defines a new name for any valid c-type-spec. The arguments are as
follows:

field-specs A non-empty list of field-specs. Each field-spec is either
a simple field definition or a union definition. A simple
field definition defines one field and is a list of the form
(fieldname c-type-spec) or (fieldname .
c-type-spec) . The former is convenient for simple c-
type-specs like:short or win:hwnd , as in (subspec
:short) . The latter format is convenient when the c-
type-spec includes pointers or indexing, as in
(filename :char 8) . A union definition is a list of
the form(:union field-spec-1 ... field-
spec-n) and represents a c-style union of the fields
defined by thefield-spec-i .

tag If present this must be a non-negative integer to be used
as the tag for this cstructure type. If this item is omitted
from thedefcstruct form then the system will select a
tag value at the time thedefcstruct is expanded.

Argument Description

name the new name to be associated with the c-type. After the
defctype is evaluated name becomes a synonym for
c-type-spec .

c-type-spec Any c-type-spec.

Argument Description

3 - 10 ALLEGRO CL for Windows: Foreign Function Interface

deflhandle [Macro]

Arguments: name &optional tag

Package: c-types

defshandle [Macro]

Arguments: name &optional tag

Package: c-types

■ Evaluating these macros definesname as a c-type-spec denoting a tagged handle.
deflhandle defines a long (Win32) handle with a 32-bit handle-value.defs-
handle defines a short (Windows 3.1) handle with a 16-bit value. [16-bit DLL’s are
not supported when running under Windows 95 or NT.] All handles of this type will
be tagged. The tag associated with the type istag , if that is present, otherwise it is
chosen by the system. The arguments are as follows:

defun-callback [Macro]

Arguments: name arg-list-and-types &rest body

Package: c-types

defun-c-callback [Macro]

Arguments: name arg-list-and-types &rest body

Package: c-types

■ These macros define Lisp functions that are to be invoked from outside Lisp as
callbacks. Once such a function has been definedget-callback-procinst
must be used to get an address that a foreign function can use to call it. Lisp must be
told whether the calling function will be using the C or Pascal calling conventions,
and whether it will be running in 16-bit or 32-bit mode. [16-bit DLL’s are not sup-
ported when running under Windows 95 or NT.] Callbacks for the builtin Win32 API

Argument Description

name The name for the new handle type. This becomes a new
c-type-spec.

tag If present, this must be a non-negative integer.

ALLEGRO CL for Windows: Foreign Function Interface 3 - 11

F
F

I
R

eference

functions will get control via C conventions from 32-bit code. Callbacks to be used
by 16-bit DLL’s may be either Pascal or C and will, of course, be called from 16-bit
code. [16-bit DLL’s are not supported when running under Windows 95 or NT.]
defun-c-callback always defines a callback for 32-bit mode.defun-call-
back depends on the value of the symboldefault-callback-style at the
time thedefun-callback is expanded to specify the calling environment.
■ The arguments are as follows:

Argument Description

name a symbol naming the function.get-callback-
procinst will use this symbol to allocate a c-callable
address that will invoke the function.

arg-list-and-types a list of the form((symbol c-type-spec) ...) with
one entry for each argument passed from the foreign
function. Thesymbol serves as a name for the argument
and thec-type-spec specifies the type of argument
being passed by the foreign function. The effects of dif-
ferent type specifications are described in a table below.

body Lisp forms that make up the body of the function. The
arguments can be referenced within body using the
names defined inarg-list-and-types . The value of
the last form in body determines the value returned to the
foreign caller. If this is an integer it is returned as a long.
If it is a cpointer then the cpointer-value is extracted and
returned. Any other data type results in a return value of
0.

3 - 12 ALLEGRO CL for Windows: Foreign Function Interface

■ The following table shows the allowable types in the argument list. These can be
the second elements of the lists that make up the list that is the value ofarg-list-
and-types . [16-bit DLL’s are not supported when running under Windows 95 or
NT.]

c-type-spec

C argument size
(16-bit arg is nil)

/(16-bit arg is non-
nil)

arg converted to Lisp type

:char 32/16 (integer -128 127)

:unsigned-char 32/16 (integer 0 255)

:short 32/16 (integer #x-8000 #x7fff)

:unsigned-short 32/16 (integer 0 #xffff)

:long 32/32 (integer #x-80000000
#x7fffffff)

:unsigned-long 32/32 (integer 0 #xffffffff)

:long-bool 32/32 0 -> nil
non-zero -> non-nil

:short-bool 32/16 0 -> nil
non-zero -> non-nil

any handle type 32/16 a handle of the specified tag

:single-float 32/32 float

:double-float 64/64 float

(ctype *)
or
(ctype size)

32/32 32-bit cpointer (when16-bit is nil)
16:16 cpointer (when16-bit is non-
nil)

ALLEGRO CL for Windows: Foreign Function Interface 3 - 13

F
F

I
R

eference

defun-dll [Macro]

Arguments: lisp-name arg-list-and-types &key return-mode
return-type library-name entry-name 16-bit
call-mode

Package: c-types

■ This macro defines a Lisp function that converts its arguments for passing to a
foreign function, invokes the specified foreign function, and converts the foreign
function's result back to Lisp format. The arguments are as follows:

Argument Description

lisp-name name of the Lisp function being defined

arg-list-and-types a list of the form((symbol c-type-spec) ...) with
one entry for each argument passed to the foreign function.
The symbol serves as a name for the argument and the c-type-
spec specifies the type of argument expected by the foreign
function. The effects of different type specifications are
described in a table below. The lisp function will take a fixed
number of arguments, either the number of elements inarg-
list-and-types or one more than that number, depend-
ing on the value specified forreturn-mode .

3 - 14 ALLEGRO CL for Windows: Foreign Function Interface

return-mode one ofnil , :dynamic , :static , or :smash . nil is the
default. Specifyingnil or :dynamic produces a lisp func-
tion that allocates a new return-type object on each call and
returns that object (or an equal fixnum). Specifying:static
produces a lisp function that has a single return-type object
that is destructively overwritten with the foreign function’s
return value. The same object is used each time the lisp func-
tion is called. The lisp function returns either that object or a
fixnum of equal value. Specifying:smash means that the
lisp function takes one more argument than the foreign func-
tion. This extra argument, the last argument in the call, must
be an object of a type appropriate to be modified to hold the
result from the foreign function. That is, it must in general be
an object of the type specified byreturn-type , but see the
special treatment of:unsigned-long in thereturn-
type description below.

Argument Description

ALLEGRO CL for Windows: Foreign Function Interface 3 - 15

F
F

I
R

eference

return-type a c-type-spec specifying the type returned by the foreign func-
tion. This will be mapped to a Lisp type as follows:

:void - nil
:char - a fixnum
:unsigned-char - a fixnum
:short - a fixnum
:unsigned-short - a fixnum or a bignum; for

:smash mode, a bignum must be supplied.
The Lisp function will return a fixnum or a
bignum as appropriate.

:long - a fixnum or a bignum; for:smash mode, a big-
num must be supplied. The Lisp function
will return a fixnum or a bignum as appro-
priate.

:unsigned-long - a fixnum or a bignum; for:smash
mode, a vector of two bignums must be sup-
plied - as built by
(vector (make-bignum 2)
(make-bignum 4)) . The Lisp function
will return a fixnum or one of the bignums
as appropriate.

:short-bool - the Lisp function returnsnil if the for-
eign function returns a short 0, returnst
otherwise.

:long-bool - he Lisp function returnsnil if the for-
eign function returns a long 0, returnst oth-
erwise.

:single-float - a lisp float
:double-float - a lisp float
:short-handle - a tagged short-handle
:long-handle - tagged long-handle
(c-type-spec *) - a 32-bit near cpointer
(c-type-spec **) - a 16:16 far pointer

Argument Description

3 - 16 ALLEGRO CL for Windows: Foreign Function Interface

■ The following table shows how arguments are passed to foreign functions. Note
that the last column applies only to images running under Windows 3.1 or Windows
for Workgroups because 16-bit DLL’s are not supported when running under Win-
dows 95 or NT. The c-type-specs are the second element of the lists that make up the
list that is the value ofarg-list-and-types . An error will be signaled if an

library-name A form that will evaluate to a file namestring or pathname for
the DLL containing the foreign function to be invoked by the
new Lisp function. This form will be evaluated when the
defun-dll form or its compiled equivalent is loaded. Alle-
gro CL will not actually try to load the DLL until the first time
a call is made to a function in that DLL, at which time it will
link the Lisp function to the C function. It will be necessary to
break these links if an image is saved for a later Lisp session,
since the new Lisp will not have loaded the DLL. See
rename-dll-libraries , unlink-dll-func-
tions , andunlink-dll.

entry-name A string naming the foreign function’s entry point as exported
from the DLL.

16-bit True if the DLL is a 16-bit Windows 3.1 DLL, otherwisenil .
The default isnil . [16-bit DLL’s are not supported when run-
ning under Windows 95 or NT.]

call-mode :c or :pascal . This specifies the argument order and who
clears the stack.:c is the default and is appropriate for 32-bit
DLL’s. For 16-bit DLL’s, either mode can occur, and the cor-
rect mode for Windows 3.1 API functions is:pascal .

Argument Description

ALLEGRO CL for Windows: Foreign Function Interface 3 - 17

F
F

I
R

eference

argument of any type other than those listed is supplied..

c-type-spec lisp-type
converted to
(16-bit arg

is nil)

converted to (16-
bit arg

is non-nil)

:char (integer -128
127)
character

32-bit signed binary
32-bit ascii value of char

16-bit signed binary
16-bit ascii value of char

:unsigned-char (integer 0 255)
character

32-bit unsigned binary
32-bit ascii value of char

16-bit unsigned binary
16-bit ascii value of char

:short (integer
#x-8000 #x7fff)

32-bit signed binary 16-bit signed binary

:unsigned-short (integer 0
#xffff)

32-bit unsigned binary 16-bit unsigned binary

:long (integer
#x-80000000
#x7fffffff)

32-bit signed binary 32-bit signed binary

:unsigned-long (integer 0
#xffffffff)

32-bit unsigned binary 32-bit unsigned binary

:long-bool nil
anything else

32-bit 0
32-bit non-zero value

32-bit 0
32-bit non-zero value

:short-bool nil
anything else

32-bit 0
32-bit non-zero value

16-bit 0
16-bit non-zero value

any handle type a handle with a match-
ing tag (two tags match
if they are eql or if either
is 0)

32-bit handle value 16-bit handle value

:single-float float 32-bit float 32-bit float

:double-float float 64-bit double 64-bit float

3 - 18 ALLEGRO CL for Windows: Foreign Function Interface

dll-handle [Function]

Arguments: library-name

Package: c-types

■ This function returns the windows or NT handle of the named library if it has
been loaded,nil if it hasn't.library-name should be a string, symbol, or path-
name naming the DLL

export-c-names [Variable]

Package: c-types

■ The value of this variable controls the exporting of names of c types, cstructs and
cstruct fields. If*export-c-names* is true when the defining form is expanded,
then the names are exported when the defining form is evaluated. Otherwise they are
not exported. The initial value of this global variable isnil . It is almost always
appropriate for it to benil .

far-peek [Function]

Arguments: pdest.lisp psource.c offset length

Package: c-types

far-poke [Function]

Arguments: psource.lisp pdest.c offset length

Package: c-types

(ctype *)
or
(ctype size)

ctype

32-bit cpointer

16:16 cpointer
string

32-bit address of object’s
data portion
32-bit cpointer-value

[error]
32-bit address of string

16:16 address of object’s
value
16:16 equivalent of
cpointer-value
cpointer-value unchanged
16:16 address of string’s
data

c-type-spec lisp-type
converted to
(16-bit arg

is nil)

converted to (16-
bit arg

is non-nil)

ALLEGRO CL for Windows: Foreign Function Interface 3 - 19

F
F

I
R

eference

■ far-peek copies length bytes to the beginning ofpdest.lisp from
((char *) psource.c) + offset .

far-peek returnspdest.lisp .

■ far-poke copieslength bytes from the beginning ofpsource.lisp to
((char *) pdest.c) + offset .

far-poke returnspsource.lisp .

■ The arguments are as follows:

get-callback-procinst [Function]

Arguments: callback-function-name

Package: c-types

■ This function returns a cpointer whose cpointer-value can be used as an entry
point from foreign code to call the named callback function. The cpointer will be a
32-bit near pointer if the callback was defined as from 32-bit code, a 16:16 far
pointer if the callback was defined as from 16-bit code.callback-function-
name should be a symbol naming the callback function. This must be the symbol
specified as the name in adefun-callback or defun-c-callback macro.

Argument Description

pdest.lisp (for
far-peek)
psource.lisp (for
far-poke)

any Lisp object which can be used as a 0:32 near pointer;
generally a string or cstructure.

psource.c (for
far-peek)
pdest.c (for far-poke)

a 16:16 or 0:32 cpointer.

offset an integer indicating the offset to data relative to
psource.c (for far-peek) or pdest.c (for
far-poke)

length an integer indicating the number of bytes to copy.

3 - 20 ALLEGRO CL for Windows: Foreign Function Interface

handle-value [Macro]

Arguments: handle-type handle-form

Package: c-types

■ This macro expands into code to evaluatehandle-form and access the foreign
handle code embedded in the resulting Lisp handle object, which must be of the
specified type. This form issetf able.handle-type should be a symbol naming
a handle type.handle-form should be a form that evaluates to a handle of the
same size as the specified type.

handle= [Macro]

Arguments: handle-type form1 form2

Package: c-types

■ This macro expands into code that compares the values, but not the type codes,
of two handles.handle-type must be a symbol that has been defined to name a
handle.form1 and form2 should be forms that evaluate to handles.handle=
returns true is the handle-values of the two handles are numerically equal; otherwise
handle= returnsnil .

equal andequalp , two standard Common Lisp functions for comparing objects that
have components, can also be used to compare handles.

(equal obj1 obj2) and (equalp obj1 obj2) , whenobj1 evaluates to a han-
dle, return true if and only if:

• obj2 evaluates to a handle of the same length (short or long) asobj1 , and

• the handle-value ofobj1 is eql to the handle-value ofobj2 ; and

• either the handle-type ofobj1 is eql to that ofobj2 or eitherobj1 or obj2
has handle-type 0 (which is the wild type).

Thus, using equal or equalp differs from handle= in that the handle-type of the handles
is compared.

equal andequalp can also be used to compare cpointers.

(equal obj1 obj2) and (equalp obj1 obj2) , when obj1 evaluates to a
cpointer, return true if and only if:

• obj2 evaluates to a cpointer, and

• the cpointer-value ofobj1 is eql to the cpointer-value ofobj2 ; and

ALLEGRO CL for Windows: Foreign Function Interface 3 - 21

F
F

I
R

eference

• either the cpointer-type ofobj1 iseql to that ofobj2 or eitherobj1 orobj2
has handle-type 0 (which is the(:void *) type).

ct:hnull [Variable]

■ The value of this global variable is a 32-bit near cpointer corresponding to a
(void *)0 . This value is appropriate to pass as a null value for foreign functions
that expect a pointer argument.
■ In earlier releases, this variable was named by the symbolct:null . However,
there is also a symbolcommon-lisp:null (indeedct:null andcommon-
lisp:null named the same symbol). We have changed the variable name to
ct:hnull to avoid overloading the Common Lisp symbol. However,common-
lisp:null retains its meaning as a synonym forct:hnull for Release 3.0 to
preserve backward compatibility. Please usect:hnull in all new code and rewrite
previously written code as convenient.

list-dll-libraries [Function]

Arguments: all

Package: c-types

■ This function returns a list of DLL names referenced by the current Lisp image.
If all is nil then only those DLL’s that have been loaded are included in the list.
If all is notnil then all DLL’s that have been referenced in foreign function def-
initions are included, whether loaded or not.

null [Variable]

Package: common-lisp

■ See the description ofct:hnull just above.

null-cpointer-p [Macro]

Arguments: cpointer

Package: c-types

■ This macro expands into code to evaluatecpointer and test the resulting
cpointer's value. If the cpointer-value is 0, indicating a null pointer, the code returns
true, otherwise it returnsnil . cpointer should be a form evaluating to a cpointer.

3 - 22 ALLEGRO CL for Windows: Foreign Function Interface

null-handle [Macro]

Arguments: handle-type

Package: c-types

■ This macro expands into a constant handle of the specified type and 0 handle
value. handle-type should be a symbol naming a handle type.

null-handle-p [Macro]

Arguments: handle-type handle

Package: c-types

■ This macro expands into code to evaluate handle and test the resulting handle.
The code returns true if the handle's value is 0,nil otherwise.

rename-dll-libraries [Function]

Arguments: mapping-alist

Package: c-types

■ This function searches through the foreign function definitions and matches the
library associated with each one against themapping-alist . The match is done
by eql . Each time a match is found, the foreign function definition is altered so that
the new library name replaces the old one in the definition. If no match is found in
the alist then the definition is left unchanged.

mapping-alist should be an association list mapping old library names to
their replacements. Each entry in the alist is of the form(old-name . new-
name) where bothold-name andnew-name are keyword symbols whose print-
names are strings naming the DLL files.

sizeof [Macro]

Arguments: c-type-spec

Package: c-types

■ This macro expands into the size of an object of the specified type. This size is
computed in C terms, and thus it does not include the Lisp header for an object of
that type allocated in the heap.c-type-spec must be a valid name for a c-type at
macro expansion time.

ALLEGRO CL for Windows: Foreign Function Interface 3 - 23

F
F

I
R

eference

strlen [Function]

Arguments: string

Package: c-types

■ This function returns the number of characters instring before the first null
byte. This corresponds to the string's length from C's point of view.string must
be a simple string of length less than 32768 characters.

unlink-dll [Function]

Arguments: library-name

Package: c-types

■ This function finds all foreign functions defined as being loaded from the named
DLL and marks them to reestablish the linkage the next time each is called. The DLL
is then unloaded. Calling this function is appropriate when a DLL has been recom-
piled while the Lisp image is running.library-name must be a string, symbol or
pathname naming the DLL file to be unloaded.

unlink-dll-functions [Function]

Arguments:
Package: c-types

■ This function marks all foreign function definitions so that each will reestablish
its link with the foreign function the next time it is called. A call to this function is
part of the standard system initialization sequence since connection must be reestab-
lished with any DLL’s that might have been loaded when the image was saved. It can
also be used to force reloading of any DLL’s that have been rebuilt while the Lisp
image was running.

3 - 24 ALLEGRO CL for Windows: Foreign Function Interface

[This page intentionally left blank.]

ALLEGRO CL for Windows: Foreign Function Interface 4 - 1

D
D

E
interface

Chapter 4 DDE interface

DDE stands for Dynamic Data Exchange. Quoting from theWindows API Bible1 (a stan-
dard reference for programming with Windows):

Dynamic Data Exchange is a message protocol that allows Windows applications
to exchange data.

In this chapter, we describe the functionality available in Lisp for DDE. Note that We do
not describe DDE in much detail. We assume you are familiar with using DDE between
Windows applications. If you are not, please refer to standard Windows programming man-
uals.

Creation and management of DDE "string handles" is done automatically. You simply
pass in Lisp strings or keyword symbols that name applications, topics, and items without
worrying about the string handles.

Rather than deal with the DDE callback function directly, you can simply supply a few
Lisp methods which are invoked automatically when callbacks occur.

Conversations with other tasks are implemented as CLOS instances (calledports), so
you don't need to deal with the conversation handles directly.

Lisp can act as either a client or server, and handle cold, warm, and hot links. Currently
the only clipboard data format supported is text.

The functions and variables documented below are all exported from thedde package.

Example
There is a simple example illustrating the DDE functionality inex\dde\examples.lsp. Also
in that directory is ddedoc.txt which contains most of the information in this chapter.

1.The Waite Group’s Windows API Bible, Mill Valley, California, Waite Group Press, 1992.

4 - 2 ALLEGRO CL for Windows: Foreign Function Interface

4.1 Client functionality

Creating a port where Lisp is the DDE client
Create aclient-port instance by callingmake-instance on theclient-port
class. Available initargs are:

:name

an arbitrary object (typically a symbol) to name this port. Defaults to:client-
n, wheren is an integer that is auto-generated to make the name unique.

:application

the "service" name of the DDE server application that this port will connect to.
This is often the filename of the executable image that is run, such as "progman"
for the Program manager, but can be any arbitrary string that that server chooses
to use. This value can be either the official DDE string or the keyword symbol
whose print name is that string.

:topic

the particular topic of the application that this port will address. (To address mul-
tiple topics of the same application, you must create multiple port instances.) This
value can be either a string or a keyword symbol.

These attributes can be changed after the instance is created usingsetf and the acces-
sorsport-name , port-application , port-topic (all aresetf ’able). The new
values will be used if the port is closed and re-opened.

Example:
;; Create a port with the program manager acting as the DDE
;; server
(setq port1 (make-instance 'client-port
 :application :progman
 :topic :progman))

ALLEGRO CL for Windows: Foreign Function Interface 4 - 3

D
D

E
interface

Functionality

open-port [Function]

Arguments: client-port

Package: dde

■ Activates this port. The port can later be closed, its application and/or topic
optionally changed, and opened once again. Example:

(open-port port1)

close-port [Function]

Arguments: client-port

Package: dde

■ Deactivates this port. If this function is not used, all client ports are closed any-
way when Lisp exits. Example:

(close-port port1)

port-open-p [Function]

Arguments: client-port

Package: dde

■ Returns non-nil if and only if the port is open.

send-command [Function]

Arguments: client-port command-string &key (timeout 1000))

Package: dde

■ Sends a DDE "Execute" message to this port's server application. Command-
string should be whatever arbitrary string is expected by that DDE server. Many
servers accept strings as they would be written in that application's macro language,
sometimes surrounded by required square brackets.
■ Returns non-nil if the command is accepted, andnil if it is rejected. The
optional timeout argument is in milliseconds. If the command is neither accepted nor
rejected within this timeout period, thennil is returned.

4 - 4 ALLEGRO CL for Windows: Foreign Function Interface

■ Example:

;; Tell program manager to add a program icon f
;; or notepad.exe
(send-command port1 "[AddItem(notepad.exe,Test Item)]")

send-request [Function]

Arguments: client-port item &key (link :cold)
(timeout 1000))

Package: dde

■ Sends a DDE "Request" or "Advice" message to retrieve information from a
DDE server for a particular item.
■ If link is :cold (which is the default), then the return value is a list of strings
derived from the single string returned by the DDE server (Lisp separates it into mul-
tiple strings where TAB characters or RETURN/LINEFEED pairs appeared in the
server's string). Iflink is :hot or :warm , then the answer is not returned from
this function call, but rather thereceive-advice generic function will be called
whenever the value for the requested item changes, assuming that the server
responds to the changes as it should. Iflink is :stop , then a hot or warm link that
was previously started will be stopped.

If the request is unsuccessful, as when the server doesn't handle the requested
item, thennil is returned. The optional timeout argument is in milliseconds. If the
request is neither accepted nor rejected within this timeout period, thennil is
returned.

Many applications that act as DDE servers implement a topic called SYSTEM
and an item called SYSITEMS, and sometimes an item called TOPICS, to which you
can send a request to find out about additional topics.

■ Example:

;; Ask program manager for the names of all of
;; its group windows
(send-request port1 :groups)

ALLEGRO CL for Windows: Foreign Function Interface 4 - 5

D
D

E
interface

receive-advice [Generic function]

Arguments: (port port) topic item string

Package: dde

■ If send-request was called with a link type of:hot or :warm , then this
generic function will be invoked whenever the server tells us that the value for the
requested item has changed. You may write methods on this generic function to han-
dle these change notifications however it is appropriate for your application.

If the send-request link argument was:hot , then thestring argument
here will be a string; if the link argument was:warm , then the string argument will
benil .

active-client-ports [Variable]

Package: dde

■ A list of the ports that we have opened with any DDE servers.

send-value [Function]

Arguments: client-port item value-string
&key (timeout 1000)

Package: dde

■ Sends a DDE "Poke" message to send unsolicited information to a DDE server.
Non-nil is returned if the server accepted the poke, andnil otherwise.

4.2 Server functionality

service-name [Variable]

Package: dde

■ The default service-name that will be established for the Lisp DDE server when
open-server is called. If a different service-name is passed toopen-server ,
then this variable will be set to that value. Initial value is:allegro .

4 - 6 ALLEGRO CL for Windows: Foreign Function Interface

service-topics [Variable]

Package: dde

■ The allowed topics with which clients can connect to the Lisp DDE server. The
initial value is(nil :system :eval) . An empty list indicates that any topic is
allowed. Anil within the list indicates that the null topic is allowed.

This list will be returned if a client sends the Lisp server a request with the
:system topic and the:topics item, to follow the convention for telling a client
what topics are available on this DDE server.

If the :topics argument is passed to open-server, then this variable will be set
to the value of that argument.

sysitems [Variable]

Package: dde

■ A list that will be returned when a client sends a request to our server with the
:system topic and the:sysitems item, to follow the convention for telling a cli-
ent what items are available on the:system topic. The initial value is

(:topics :command-result)

server-active-p [Variable]

Package: dde

■ This variable indicates whether our Lisp DDE server is currently active, as it is
whenopen-server has been called and neitherclose-server nor close-
dde has been called since then.

open-server [Function]

Arguments: &key (name *service-name*)
(topics *service-topics*)

Package: dde

■ Establishes this Lisp process as a DDE server. Any client can thereafter connect
to this Lisp by using the service name and allowed topics that are established here.
name and topics default to the global variables indicated. If other values are
passed in, the global variables are set to the values that were passed.

ALLEGRO CL for Windows: Foreign Function Interface 4 - 7

D
D

E
interface

■ Each Lisp process may open only one dde server, though multiple clients may
each open multiple ports to it.

close-server [Function]

Arguments:

Package: dde

■ Makes this Lisp process no longer act as a DDE server. The server can be re-
opened later after closing it.

active-server-ports [Variable]

Package: dde

■ A list of all ports that client applications have opened with this Lisp server. These
server-port instances are created and managed automatically, but the list is available
if you want to see how many applications are currently using this Lisp as a server.
Unfortunately we cannot tell who those applications are.

execute-command [Generic function]

Arguments: topic command-string

Package: dde

■ This generic function is invoked when an application sends the Lisp server a
command to execute. You may write methods on this generic function to execute
arbitrary commands as appropriate. This method's action can depend on the particu-
lar topic name, which is always a keyword symbol. The value returned by this
generic function can be retrieved later by the application if it sends a request with the
:command-result item for this topic.
■ The following built-in method is defined:

(defmethod execute-command ((topic (eql :eval)) command-string)
 (let ((*read-tolerant* t))
 (eval (read-from-string command-string))))

For the special topic:eval , this built-in method executes the command string
as a Lisp form. Note that this won't work in a runtime Lisp since it callseval ,
which invokes the compiler. Your ownexecute-command methods for a runt-
ime application should do some sort of command execution that you implement.

4 - 8 ALLEGRO CL for Windows: Foreign Function Interface

answer-request [Generic function]

Arguments: topic item command-result

Package: dde

■ This generic function is invoked when another application sends a request to the
Lisp DDE server. You may write methods on this generic function to return a string
as appropriate for the passed-in topic and item, which will always be keyword sym-
bols. The default method returns the null string.

The command-result argument can normally be ignored -- it contains the
result of the previous command that was executed for this topic by the application
that is sending this request, and is passed here for the special version of this generic
function that returns that value when the item is:command-result .

■ Here are some answer-request methods that are built into the allegro DDE facil-
ity, to respond to common DDE topics and items.

(defmethod answer-request ((topic (eql :system))
 (item (eql :sysitems))
 command-result)
 (list-to-tabbed-string *sysitems*))

This built-in answer-request method follows the convention for telling a
client what items are available under the:system topic.

(defmethod answer-request ((topic (eql :system))
 (item (eql :topics))
 command-result)
 (list-to-tabbed-string *service-topics*))

This built-in answer-request method follows the convention for telling a client
what topics are available on this DDE server.

(defmethod answer-request ((topic (eql :system))(item (eql :help))
 command-result)
 "Send a DDE request for the HELP item of other topics for
 info on those topics")

This help item informs a client that it can get help about topics other than the sys-
tem topic by sending a request with the HELP item to those topics.

ALLEGRO CL for Windows: Foreign Function Interface 4 - 9

D
D

E
interface

(defmethod answer-request ((topic (eql :eval))(item (eql :help))
 command-result)
 #.(format nil "Send a DDE Execute using this EVAL topic ~
 to evaluate an arbitrary lisp form. To get the value ~
 returned by that form, send a DDE Request using this EVAL ~
 topic with the item COMMAND-RESULT. To retrieve the value ~
 of any lisp symbol, send it as ~
 the item in a DDE Request using this EVAL topic."))

This help item for the eval topic explains how to use the eval topic.

(defmethod answer-request ((topic (eql :eval)) item
 command-result)
 (format nil "~s" (symbol-value
 (intern (symbol-name item) *package*))))

For the special topic:eval , return the value of the symbol named by the item
argument in the current package

(defmethod answer-request ((topic (eql :eval))
 (item (eql :command-result))
 command-result)
 (format nil "~s" command-result))

For the special item:command-result of the:eval topic, return the value
that was returned by the most recentexecute-command method that was
invoked for this client application

post-advice [Function]

Arguments: topic item

Package: dde

■ A DDE server Lisp should call this function whenever an item for which that Lisp
server can handle hot or warm links has changed. This will result in the server Lisp's
answer-request generic function being invoked for any items for which hot or warm
links are currently established.

4 - 10 ALLEGRO CL for Windows: Foreign Function Interface

receive-value [Generic function]

Arguments: topic item value-string

Package: dde

■ This generic function is invoked when an application "pokes" a value to the Lisp
DDE server. You may write methods on this generic function to process the poked
values as needed. If you consider the value to be "accepted" by your Lisp application,
then you should write the method to return non-nil , or elsenil to tell the client
that you have rejected the poked information.

The defaultreceive-value method for all topics interprets theitem argu-
ment as a Lisp symbol in the current package, and sets its value to be a Lisp object
that is read from thevalue-string passed in.

list-to-tabbed-string [Function]

Arguments: list

Package: dde

■ A utility function that prints a list of Lisp objects to a string, with tab characters
between successive objects, to facilitate the DDE convention of returning multiple
answers as a single tab-delimited string. A handy function to use insideanswer-
request methods.

ALLEGRO CL for Windows: Foreign Function Interface 5 - 1

T
typedefs

and A
P

Is

Chapter 5 Windows typedefs
and API’s

Many C types are already defined in Allegro CL. They are defined withdefctype ,
defcstruct , etc. forms. The arguments and return types used by predefined Windows
API functions (listed after the types) use the types here defined. The fileosidoc.txt, in the
distribution directory included, contains these forms as well as the list of pre-defined Win-
dows API functions. To find specific definitions, bring that file up in a editor window and
use editing tools to search through it.

In this chapter, we show small pieces from the file to show what it looks like.

Typedefs
These forms defines types available in Allegro CL for Windows. Primitives are defined
first, with forms such as these:

(defctype int :long)
(defctype uint :unsigned-long)
(defctype bool :long-bool)
(defctype byte :unsigned-char)
(defctype char :char)
(defctype ushort :unsigned-short)
(defctype word :unsigned-short)
...

Following the simple definitions are more complex forms based on the primitive defini-
tions. Here are some examples.

5 - 2 ALLEGRO CL for Windows: Foreign Function Interface

(defcstruct box
 ((left long)
 (top long)
 (right long)
 (bottom long)
))

(defcstruct position
 ((x long)
 (y long)
))

(defctype void :void)

(defcstruct stat
 ((st_dev short)
 (st_ino ushort)
 (st_mode ushort)
 (st_nlink short)
 (st_uid short)
 (st_gid short)
 (st_rdev short)
 (st_size long)
 (st_atime long)
 (st_mtime long)
 (st_ctime long)
))

Allegro CL access to Win32 API
Many functions in the Windows Application Programmers Interface (the Win API) are
already defined within Allegro CL for Windows. These pre-defined functions are listed in
the fileosidoc.txt in the distribution directory. To examine the list, open that file in a text-
edit window.

We reproduce a small part of the file here. The first column is the return value. The sec-
ond column is the function name and argument list. The types are in the type definition por-
tion of the fileosidoc.txt. The list in the file is arranged alphabetically by the function name
(that is, the second column is alphabetical).

ALLEGRO CL for Windows: Foreign Function Interface 5 - 3

T
typedefs

and A
P

Is

All the symbols naming the functions are in thewin package.

Here is a simple example, suppose you wanted to know the maximum allowable time (in
milliseconds) that may occur between the first and second click of a double click. You know
from your Win API book (e.g. the MS Windows Software Development KitProgrammer’s
Reference, volume 2Functions) that the APIgetdoubleclicktime() returns that
value. In Lisp, you would call:

(win:getdoubleclicktime)

Looking in the table, you see this function returns auint (the Lisp equivalent of an
unsigned integer). On our system, this function returned 452.

Note that some lines wrapped in this table, since the functions took a lot of arguments.
There is no other significance to the line wrapping.

int abortdoc(hdc);
(char *) aclpc_kernel_version((char *),short);
atom addatom(lpctstr);
int addfontresource(lpctstr);
bool adjustwindowrect(lprect,dword,bool);
bool adjustwindowrectex(lprect,dword,bool,dword);
bool animatepalette(hpalette,uint,uint,(paletteentry

*));
bool anypopup();
bool appendmenu(hmenu,uint,uint,lpctstr);
bool arc(hdc,int,int,int,int,int,int,int,int);
uint arrangeiconicwindows(hwnd);
handle begindeferwindowpos(int);
hdc beginpaint(hwnd,lppaintstruct);
bool bitblt(hdc,int,int,int,int,hdc,int,int,dword);
bool bringwindowtotop(hwnd);
bool buildcommdcb(lpstr,lpdcb);
bool callmsgfilter(lpmsg,int);
lresult callwindowproc(wndproc,hwnd,uint,wparam,lparam);
bool changeclipboardchain(hwnd,hwnd);
short chdir((char *));
bool checkdlgbutton(hwnd,int,uint);
dword checkmenuitem(hmenu,uint,uint);
bool checkradiobutton(hwnd,int,int,int);

5 - 4 ALLEGRO CL for Windows: Foreign Function Interface

hwnd childwindowfrompoint(hwnd,point);
short chmod((char *),short);
bool choosefont(lpchoosefont);
bool chord(hdc,int,int,int,int,int,int,int,int);
int chsize(hfile,long);
bool clearcommbreak(handle);
bool clienttoscreen(hwnd,lppoint);
bool clipcursor(lprect);
bool closeclipboard();
handle closemetafile(hdc);
bool closewindow(hwnd);
int combinergn(hrgn,hrgn,hrgn,int);
long commdlgextendederror();
handle copymetafile(handle,lptstr);
int copyrect(lprect,lprect);
int countclipboardformats();
hbitmap createbitmap(int,int,uint,uint,lpstr);
hbitmap createbitmapindirect(lpbitmap);
hbrush createbrushindirect(lplogbrush);
bool createcaret(hwnd,hbitmap,int,int);
hbitmap createcompatiblebitmap(hdc,int,int);
hdc createcompatibledc(hdc);
hcursor createcursor(handle,int,int,int,int,lpstr,lpstr);
hdc createdc(lpstr,lpcstr,lpcstr,lpdevmode);
hwnd createdialog(handle,lptstr,hwnd,dlgproc);
hwnd createdialogindirect(handle,lpstr,hwnd,dlgproc);
hwnd createdialogindirectparam(handle,lpstr,hwnd,

dlgproc,lparam);
hwnd createdialogparam(handle,lpctstr,hwnd,dlgproc,

lparam);
hbitmap createdibitmap(hdc,lpbitmapinfoheader,dword,lpstr,

lpbitmapinfo,uint);
...

ALLEGRO CL for Windows: Foreign Function Interface I - 1

Index

Index

Numerics
16-bit DLL (not supported under Windows 95 or Windows NT) 2-4

A
active-client-ports (variable, dde package) 4-5
active-server-ports (variable, dde package) 4-7
answer-request (generic function, dde package) 4-8

C
callocate (macro, ct package) 3-3
ccallocate (macro, ct package) 3-3
:char (c-type-spec) 3-1
client-port (class in DDE facility) 4-2

initargs 4-2
close-port (function, dde package) 4-3
close-server (function, dde package) 4-7
cpointer

comparing with equal 3-20
comparing with equalp 3-20

cpointer-value (function, ct package) 3-4
cref (macro, ct package) 3-4
cset (macro, ct package) 3-6
csets (macro, ct package) 3-7
ct (nickname of c-types package) 1-1
c-types (package for ffi symbols, nickname ct) 1-1

D
DDE

client functionality 4-2
interface 4-1
server functionality 4-5

default-callback-style (variable, ct package) 3-7
defcstruct (macro, ct package) 3-8
defctype (macro, ct package) 3-9

I - 2 ALLEGRO CL for Windows: Foreign Function Interface

deflhandle (macro, ct package) 3-10
defshandle (macro, ct package) 3-10
defun-callback (macro, ct package) 3-10
defun-c-callback (macro, ct package) 3-10
defun-dll (macro, ct package) 3-13
DLL

16-bit DLL’s not supported under Windows or Windows NT 2-4
dll-handle (function, ct package) 3-18
:double-float (c-type-spec) 3-2

E
equal

used to compare cpointers 3-20
used to compare handles 3-20

equalp
used to compare cpointers 3-20
used to compare handles 3-20

examples
foreign function calls 1-1

execute-command (generic function, dde package) 4-7
export-c-names (variable, ct package) 3-18

F
far-peek (function, ct package) 3-18
far-poke (function, ct package) 3-18
foreign function interface

accessing a C string 1-7
examples 1-1

G
get-callback-procinst (function, ct package) 3-19

H
handle

comparing with equal 3-20
comparing with equalp 3-20
comparing with handle= 3-20

handle= (macro, ct package) 3-20

ALLEGRO CL for Windows: Foreign Function Interface I - 3

Index

handle-value (macro, ct package) 3-20
hnull (variable, ct package) 3-21

L
list-dll-libraries (function, ct package) 3-21
list-to-tabbed-string (function, dde package) 4-10
:long (c-type-spec) 3-1
:long-bool (c-type-spec) 3-2
:long-handle (c-type-spec) 3-2

N
null (variable, common-lisp package) 3-21
null-cpointer-p (macro, ct package) 3-21
null-handle (macro, ct package) 3-22
null-handle-p (macro, ct package) 3-22

O
open-port (function, dde package) 4-3
open-server (function, dde package) 4-6

P
port-application (function, dde package) 4-2
port-name (function, dde package) 4-2
port-open-p (function, dde package) 4-3
port-topic (function, dde package) 4-2
post-advice (function, dde package) 4-9

R
receive-advice (generic function, dde package) 4-5
receive-value (generic function, dde package) 4-10
rename-dll-libraries (function, ct package) 3-22

S
send-command (function, dde package) 4-3
send-request (function, dde package) 4-4
send-value (function, dde package) 4-5
server-active-p (variable, dde package) 4-6
service-name (variable, dde package) 4-5

I - 4 ALLEGRO CL for Windows: Foreign Function Interface

service-topics (variable, dde package) 4-6
:short (c-type-spec) 3-1
:short-bool (c-type-spec) 3-2
:short-handle (c-type-spec) 3-2
:single-float (c-type-spec) 3-2
sizeof (macro, ct package) 3-22
string

accessing a C string 1-7
strlen (function, ct package) 3-23
sysitems (variable, dde package) 4-6

U
unlink-dll (function, ct package) 3-23
unlink-dll-functions (function, ct package) 3-23
:unsigned-char (c-type-spec) 3-1
:unsigned-long (c-type-spec) 3-2
:unsigned-short (c-type-spec) 3-1

V
:void (s-type-spec) 3-1

W
Windows APIs 5-2
Windows typedefs 5-1

ALLEGRO CL for Windows

G
lossary

PREFACE

There are two volumes of bound documentation for Allegro CL for Windows. This is vol-
ume 2. Each volume contains several manuals. There is also aRead This First document,
which not bound in with the rest of the documentation.

Here is a brief description of the documentation:

1. Read This First. This document is supplied loose. It contains information that
was not put in the bound documentation.

Volume 1
2. Getting Started. This document describes how to install Allegro CL for

Windows on your system and it gives information about running the product.

3. Common Lisp Introduction. This document is an introduction to the Common
Lisp language and the Allegro CL for Windows implementation of it.

4. Interface Builder. The Interface Builder allows you to build an interface to
your application interactively. It is described in this manual.

5. Foreign Function Interface. Allegro CL for Windows supports calling
applications written in languages other than Lisp. This document describes
the interface.

Volume 2
6. Programming Tools. This document describes the user interface to Allegro

CL for Windows. In particular, it describes the Toploop window, the editor,
the debugging facilities, etc.

7. General Index. An index to all documents in Volumes 1 and 2.

Professional version only
The Professional version of Allegro CL provides the facility to create standalone applica-
tions. User who purchase the Professional version also receive the following document:

Professionalsupplement. This document describes features available in the Pro-
fessional version (but not in the standard version), including how to create stan-
dalone applications.

ALLEGRO CL for Windows

Each individual manual has a table of contents at the beginning and an index at the end.
TheGeneral Index manual, in volume 3, is an index for all manuals in Volumes 1 and 2.

Debugge

Allegro CL for
Windows

Programming
Tools

version 3.0

October, 1995

Copyright and other notices:

This is revision 0 (initial version) of this manual. This manual has Franz Inc. document
number D-U-00-PC0-05-51010-3-0.

Copyright 1992, 1995 by Franz Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means
electronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademark of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Programming Tools c - 1

Contents

Preface

1 Introduction
Organization of this Guide 1-1

1.1 Notation 1-2
Fonts 1-2
Change bars 1-3

1.2 Getting help 1-4
The context-sensitive right-button-menu 1-4
Finding a symbol given only part of its name 1-5
The Help window 1-6
Other right-button and Help menu choices over symbols 1-6
Information in the Status Bar 1-7
Lambda-lists in the Status Bar 1-7
Online manual 1-7
Other items on the Help menu 1-7
Technical note on the Help window 1-8
Templates For Building Function Calls 1-8
Garbage Collection 1-8

2 The Toploop
2.1 Starting Lisp 2-1
2.2 Tools available on startup 2-1
2.3 The Toploop window 2-2

Initial package 2-3
Startup files 2-3
Typing 2-5
The copy down feature 2-5
Finding the Toploop prompt 2-6
Symbol completion 2-6
Using super-brackets 2-7

2.4 Exiting From Lisp 2-8
Closing the Toploop window 2-8

c - 2 ALLEGRO CL for Windows: Programming Tools

2.5 The menu bar 2-9
2.6 The toolbar 2-10

How to display or hide the toolbar 2-10
What the toolbar buttons do 2-10
Editing the toolbar 2-11

2.7 The status bar 2-12
How to display or hide the status bar 2-13
Details of messages in the status bar 2-13
Sending your own message to the status bar 2-13
Modifying the status bar 2-13

2.8 Evaluating expressions 2-14
Dialog boxes 2-14
Interrupting Lisp 2-15
The read function 2-15
Dealing with errors 2-15

2.9 Loading and Compiling Files 2-17
Loading Files 2-17
Errors while loading 2-18
Compiling files 2-19
Canceling 2-20
Errors while compiling 2-21

2.10 The Window menu: changing and managing windows 2-21
2.11 Changing Packages 2-22
2.12 The History dialog 2-22
2.13 The Lisp Clipboard 2-24

Edit menu choices and the Clipboard 2-26
The Windows Operating System Clipboard 2-26

2.14 Setting your preferred Lisp environment 2-26
2.15 Images 2-28

Saving an image 2-28
Loading an image 2-29
Create Standalone Form 2-30

2.16 Implementation details 2-31
2.16.1 Starting Allegro CL for Windows 2-31
2.16.2 Toploop variables and functions 2-31
2.16.3 History mechanism 2-34
2.16.4 Finding source code 2-35

ALLEGRO CL for Windows: Programming Tools c - 3

2.16.5 Writing a toploop 2-37
2.16.6 The status bar 2-37

3 The Text Editor
3.1 Opening a file 3-1

Creating (opening) a new file 3-1
Opening an existing file 3-1

3.2 Saving A file 3-2
Saving for the first time 3-2
Saving again 3-2
Saving under a different name 3-3
Discarding changes 3-3

3.3 Closing a File 3-3
3.4 Finding a definition 3-4

The All button 3-5
The Edit button 3-5
Defining you own definition 3-5
Other things to note 3-6
Redefinition warnings 3-6
Redefining a system or Lisp function or object 3-7

3.5 Inserting Text 3-7
Moving the insertion point 3-8
Selecting text 3-8

3.6 Deleting Text 3-9
3.7 Moving and Copying Text 3-9
3.8 Finding Text 3-10

Repeating a Find command 3-11
Searching using the Clipboard 3-11

3.9 Replacing Text 3-11
Repeating a Replace command 3-12
Replacing all occurrences of some text 3-12
Replacing text selectively 3-12

3.10 Marking Text 3-12
Marking a location 3-12
Moving to the mark 3-12
Selecting text using the mark 3-13
Finding out where the mark is 3-13

c - 4 ALLEGRO CL for Windows: Programming Tools

3.11 Printing 3-13
Choosing a printer 3-13
Setting up the page format 3-14
Printing a file 3-14

3.12 Evaluating Lisp Forms 3-14
Evaluating single forms 3-14
Evaluating many forms 3-14
Repeatedly evaluating one form 3-15
Selections that contain incomplete forms 3-15

3.13 Reformatting a File 3-15
Setting up 3-15
Reformatting 3-16
Comments 3-16
Commenting out part of a file 3-16

3.14 Associating Packages With Text Editor Windows 3-17
Checking the package of a file 3-17

3.15 Setting The Text Editor Mode 3-17
Altering the mode 3-17
Keybindings in editor modes 3-18
Using editor commands from any mode 3-18
Shortcuts 3-18

3.16 Text editor internals 3-20
3.16.1 Operations on characters 3-20
3.16.2 Operations on words 3-22
3.16.3 Operations on lines 3-24
3.16.4 Operations on Lisp forms 3-26
3.16.5 Operations on lists 3-28
3.16.6 Operations on definitions 3-29
3.16.7 Operations on comments 3-30
3.16.8 Indentation 3-31
3.16.9 Operations on regions 3-32
3.16.10 Operations on panes 3-34
3.16.11 Operations on files 3-35
3.16.12 Mark operations 3-35
3.16.13 Textual search and replace 3-37
3.16.14 Access to information and documentation 3-38
3.16.15 Access to debugging tools 3-40

ALLEGRO CL for Windows: Programming Tools c - 5

3.16.16 Recursive editing 3-41
3.16.17 Miscellaneous 3-41
3.16.18 Loading and saving files 3-43
3.16.19 Symbol completion and lambda lists 3-44
3.16.20 Text editor comtabs 3-46

4 The Inspector
Bringing up an inspector window 1: right-button menu 4-1
Bringing up an inspector window 2: Tool/Inspect menu 4-1
Bringing up an inspector window 3: inspect function 4-1
Closing inspector windows 4-1
Inspecting fixnums 4-2

4.1 Using the Inspector - an example 4-2
4.2 Inspecting Bitmaps 4-9
4.3 Inspecting System Data 4-12
4.4 Inspector Preferences 4-12

Variables that preserve release 2.0 inspector look-and-feel 4-14
4.5 Using The Inspector - Summary 4-14
4.6 Inspector internals 4-16

4.6.1 Program interface 4-16
4.6.2 Inspector control variables 4-17
4.6.3 Defining new inspectors 4-19
4.6.4 Inspector panes 4-22
4.6.5 An example 4-23
4.6.6 Default window sizes 4-29

5 Trace, breakpoint and profile
5.1 Simple Tracing 5-2

The Trace dialog 5-2
Starting tracing 5-3
Removing tracing 5-5

5.2 Conditional Tracing 5-5
5.3 Tracing Lots of Things 5-6
5.4 Tracing Places 5-7
5.5 Setting Breakpoints 5-8

c - 6 ALLEGRO CL for Windows: Programming Tools

5.6 Profiling 5-10
The Profile dialog 5-10
Starting profiling 5-11
Getting results without the Profile dialog 5-13
Profiling overheads 5-14
Profiling the right thing 5-16

5.7 Menu Commands 5-16
5.8 Trace, breakpoint, and profiling internals 5-18

5.8.1 Tracing functions and places 5-18
5.8.2 Setting breakpoints 5-20
5.8.3 Profiling functions and places 5-21

6 The debugger
6.1 Stack Frames 6-1
6.2 Looking at the Stack 6-2

What are restarts? 6-2
What condition is signaled? 6-3
Back to debugging this error 6-3
Seeing more of the stack 6-4
Looking at a stack frame 6-5

6.3 Exiting From The Debugger 6-6
Aborting from the Debugger 6-6
Selecting a restart from the Debugger 6-6
Returning values 6-7
Other notes 6-7

6.4 Other Ways Of Entering The Debugger 6-7
Interrupting a program 6-7
Recursive Debugger calls 6-7

6.5 Debugger Preferences 6-8
6.6 Debugger Reference 6-8

Stack frame labels 6-8
Controlling the Debugger 6-9

6.7 Debugger internals 6-10
6.7.1 Debugger external functions 6-10
6.7.2 Default window sizes 6-11

ALLEGRO CL for Windows: Programming Tools c - 7

7 The stepper and the watch facility
7.1 The Stepper 7-1

Stepping a form 7-1
Simple stepping 7-2
Skipping to the end 7-4
The Toploop window while stepping 7-5
Skipping subexpressions 7-5
Entering the Debugger 7-7
Saving the Stepper Output 7-7

7.2 Using step other than at the Top Level 7-7
Stepping recursive functions 7-7
Finding out where step has been called from 7-8
Skipping over recursive calls to step 7-8

7.3 Watching Places 7-8
Starting watching a place 7-8
Stopping watching a place 7-9

8 CLOS tools
Browse Class 8-2
Look at the status bar 8-2
Graph subclasses and Graph superclasses 8-3
Browse Generic function 8-4
Edit Class, Edit Method, and Edit Generic Function 8-4
Remove Method 8-4

9 Comtabs
9.1 Defining comtabs 9-1

Function, etc. to display comtab bindings 9-3
9.2 Event functions 9-4
9.3 Event variables 9-5

Appendix A: Editor Keybindings

Index

c - 8 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

ALLEGRO CL for Windows: Programming Tools p - 1

G
lossary

PREFACE

This manualProgramming Toolsdescribes the user interface to Allegro CL for Windows.
We recommend that every user of Allegro CL at least scan this manual and keep it handy
while using Allegro CL.

Chapter 1 in particular describes starting Allegro CL, initialization (startup) files, and
getting online help. Chapter 2 describes the Toploop window (used for typing to Lisp). Note
section 2.14 which describes setting your preferred Lisp environment.

Chapter 3 is also important for all users. It describes the text editor. The remaining chap-
ters describe additional tools.

Sections at the end of most chapters describe the internals of programming tool
described in the chapter. This information was contained in the manualInside Program-
ming Tools in earlier releases, but that manual has been folded into this one in release 3.0.
You can use the information in those sections to customize or modify the tools described.
New users, however, should note that customization and modification are not required.

There are online code examples supplied with the Allegro CL distribution. Many that
relate to programming tools are in theex\ext\directory read off the distribution disks (typ-
ically in theallegro\ directory if you followed the default installation instructions). You can
try out those examples as you read the text.

p - 2 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

ALLEGRO CL for Windows: Programming Tools 1 - 1

Introduction

Chapter 1 Introduction

Organization of this Guide
This Guide tells you how to use the Allegro CL for Windows programming tools on the
Microsoft Windows Operating System on PC’s. The tools enable you to create, edit and
debug your Lisp programs quickly and efficiently in the Lisp environment. This Guide con-
tains the following chapters:

1. Introduction , the chapter you are now reading. The remainder of this chapter
describes the terminology and conventions used in the Guide. It also explains
how to use the online help facilities while you are programming.

2. The Toploop. This chapter explains how to use the Toploop, the top-level
read-eval-print loop through which you interact with the Lisp system.

3. The Text Editor explains how to use the Text Editor to create and edit
programs, and how to save your programs as documents on disk.

4. The Inspector explains how to use the Inspector to examine and modify Lisp
data structures.

5. Trace, Breakpoint and Profile explains how to use the Trace and Breakpoint
facilities of Allegro CL for Windows. You can trace your programs and set
breakpoints to help you track down bugs. The Profile facility is also described:
this allows you to measure the performance of your programs.

6. The Debugger explains how to use the Debugger, which allows you to
examine and modify the Lisp stack at a certain point in the execution of your
program (for example when an error occurs).

7. The Stepper and the Watch Facility explains how to use the Stepper to
single step through your programs, and how to use the Watch facility to
monitor places as they are updated.

1 - 2 ALLEGRO CL for Windows: Programming Tools

8. The CLOS browser. There are several graphical tools available for assisting
with CLOS. They are described in this section.

9. Comtabs. This chapter describes the command tables (comtabs) which form
the basis for adding commands to the text editor.

There is an appendix that gives key mappings for the various editor modes. Finally, there
is an index.

Throughout this Guide, it is assumed that you are familiar with the basic operation of
the PC and of the particular versions of the Windows Operating System that you are using.
It is also assumed that you have installed Allegro CL for Windows on your computer. For
details of how to do this, see theGetting Startedmanual in volume 1 of Allegro CL for Win-
dows printed manuals.

1.1 Notation

We use fonts, display format, and special characters to convey information in this and other
Allegro CL for Windows manuals. However, we have tried to keep use of different fonts
and special characters to a minimum.

Fonts
Most of the text in this manual is 11 point Times Roman. We use the following special fonts
for the following purposes:

Font Purpose

courier bold operators (functions, macros, special forms).
This font is used exclusively for symbols naming
operators.

courier regular variables, symbols (except when naming an
operator), code samples and fragments.

ALLEGRO CL for Windows: Programming Tools 1 - 3

Introduction

Some notes on font usage:
• The same symbol can be used both to name an operator (function, macro, etc.)

and to name another Lisp object (a type, a variable, etc.) We usecourier
bold when and only when the symbol is being used to name an operator.

• We do not use courier bold in code samples and fragments since in such cases,
operators can be identified syntactically. Thus in the form(car ’(apply
cdr)) , car must name a function andcdr andapply are elements of a list.

• We do not typically use special fonts for types except when following the word
type. Thus, we say ‘the argument must be a fixnum’ and ‘the argument must be
of typefixnum ’.

Change bars
You will see change bars (a black line to the left of the text) from time to time in this man-
ual. They indicate that the text has been changed in some significant way (from the 2.0 ver-
sion of this manual). Text which is simply corrected and or rewritten but the information is
the same does not have change bars.

courier slant Arguments and placeholders. This font is used
when you (the user) will insert something differ-
ent from what appears in the text.

Italic Filenames, names of books and manuals, and
emphasis. This font is also used to identify a
word being defined (e.g. ‘Asymbol in lisp is’)

Bold Section and chapter titles. This font is also used
for emphasis, typically when a whole sentence or
paragraph rather than a single word is empha-
sized.

Font Purpose

1 - 4 ALLEGRO CL for Windows: Programming Tools

1.2 Getting help

There are numerous facilities for getting help while using Allegro Common Lisp. We dis-
cuss a number of them in this section.

The context-sensitive right-button-menu
Depressing the right mouse button while the cursor is over some object displays a menu of
choices appropriate to the object. The picture below shows the right-button menu displayed
while the cursor is oversetq (after(setq has been typed to the toploop window).

The first item in the menu calls for an inspection of the named object (the symbolsetq).
The remaining items are applicable to a symbol (Apropos, Describe, Find-in-File -- which
looks for the symbol definition in a source file) while others are applicable to the window
itself (Print -- prints the contents of the window,Find-Replace -- which displays a sub-
menu of various find/replace options). Over other objects, the right button menu is quite
different. When the cursor is over the Status Bar, the menu contains options to hide the Sta-
tus Bar, or change its font or size.

ALLEGRO CL for Windows: Programming Tools 1 - 5

Introduction

Finding a symbol given only part of its name
TheApropos choice from the right-button menu (or from the Help menu) causes the output
of the form (apropos <symbol>) to be printed to the Help window (creating it if necessary).
The Lisp functionapropos prints all symbols whose print-names contain the print-name
of the selected symbol. ChoosingApropos while the cursor is oversetq , for example,
results in the following in the Help window:

The format of the display in the window is:

SYMBOL-NAME ; status-as-variable , status-as-operator

status-as-variable is eitherunbound or bound as the named symbol
does or does not have a value.

status-as-operator shows whether the function slot of the symbol
defines the symbol as naming a function, a macro, a special form, etc. If no oper-
ator is named by the symbol,status-as-operator is blank.

In the illustration, all symbols shown are unbound and variously name functions, mac-
ros, and special forms, and some have no function binding. Look forapropos in the
Online Manual for more information.

The Help window
All the help commands display their results in the Help window. The window will retain
the contents of previous help requests. Like any window, you can bring it to the top by
choosingHelp from the Windows menu. The Help window is a Text Edit window so you
can print a copy of the Help window or save it like any other Text Editor window.

1 - 6 ALLEGRO CL for Windows: Programming Tools

Other right-button and Help menu choices over symbols
When the cursor is over a symbol, other options on the Help menu and/or the right-button
menu include:

Describe: prints the output of (describe <symbol>) to the Help window. See
describe in the Online Manual.

Documentation (Help menu only): prints the documentation string (if there is
one -- most Allegro CL for Windows symbols do not have a documentation
string) to the Help window (seedocumentation in the Online Manual).

Lambda-List : prints the lambda-list of the operator named by the symbol to the
Help window.

Quick-Symbol-Info: prints a brief description of the symbol to the Status Bar.

Quick Class Info (not applicable to setq so does not appear in right-button
menu): prints a brief description of the class named by the symbol to the Help
window.

Manual Entry (Help menu)Windows-Help (right-button menu): brings up the
entry on the symbol in the Online Manual.

Manual Contents (Help menu): displays the contents of the Online Manual.

Return-Selected-Object (right-button menu and Tools/Miscellaneous menu):
returns the selected object (in this case, the symbol) in the Toploop window.
While this choice is not that useful for symbols, it is useful when another Lisp
object is the selected object since after being returned in the Toploop window,
the object is the value of the variable* .

About Allegro CL (Help menu only): displays a small window containing infor-
mation about Allegro CL.

Information in the Status Bar
The Status Bar is the pane at the bottom of the screen when Allegro CL for Windows comes
up. It can be displayed or hidden with the F11 key, or from the Toolbar/Status Bar submenu
of the Tools menu. When it is visible, information is constantly displayed in the Status Bar
about whatever is under the cursor. Information is displayed about every button on the Tool-
bar, about most buttons on Allegro CL for Windows dialogs, about the symbol nearest the
cursor (or the selected object) in a text-edit window (such as the Toploop window), etc. We
advise people to keep the Status Bar visible.

ALLEGRO CL for Windows: Programming Tools 1 - 7

Introduction

Lambda-lists in the Status Bar
When you start typing a form in a text-edit window (such as the Toploop window), the
lambda-list (argument list) of the operator being called by the form is displayed in the Sta-
tus Bar as soon as the space after the operator name is entered. Thus, typing ‘(setq ’
causes

Common-Lisp Special Form SETQ var value &rest other-vars+values

to be displayed in the Status bar, telling you thatsetq is a special form and its lambda-list
is ‘var value &rest other-vars+values’ (i.e. a variable name, a value, and optionally other
variable name/value pairs). If you continue typing, say entering*print-level* and a
space, information on*print-level* is displayed (that it is a Common Lisp variable
and its current value).

If you want to see the lambda-list forsetq again, enter anextra space and it reappears.

Online manual
The Manual Entry and Manual Contents items bring up the Online Manual. This
describes the Lisp language including CLOS and Common Graphics. Manual Entry (in the
Help menu, Windows-Help in the right-button menu) brings up the entry for the symbol
nearest the text cursor in the active window (if there is no such symbol or if the nearest sym-
bol does not have an entry, that fact is printed to the status bar and the Online Manual does
not come up). Manual Contents brings up the contents page of the Online Manual.

Other items on the Help menu
Quick Symbol Info displays information about the symbol (including the lambda list if the
symbol names a function or other operator) in the status bar.

Technical note on the Help window
You can use the help commands from within your programs. The Help window is available
as the streamallegro:*help-output* .

1 - 8 ALLEGRO CL for Windows: Programming Tools

Templates For Building Function Calls
TheBuild Call on the Tools/Miscellaneous menu command provides a handy way of con-
structing a template for calling a function. It may be used to replace a selected symbol in
an editor window with a list consisting of the symbol followed by its lambda list. As an
example, typemember into the Toploop window and select it (we have cleared earlier
work from Toploop):

ChooseBuild Call from the Miscellaneous submenu of the Tools menu. This puts the
template for member onto the Clipboard window. Now choosePaste from the Edit menu.
Lisp replaces the selected symbol with a template of a call to it:

You can now edit the template into an actual call.

Garbage Collection
Whenever a garbage collection occurs, the cursor changes to a small hourglass. The hour-
glass remains until the garbage collection is completed, then the cursor returns to normal.

ALLEGRO CL for Windows: Programming Tools 2 - 1

Toploop

Chapter 2 The Toploop

2.1 Starting Lisp

Allegro CL for Windows must be installed on a hard disk to run. The technique for starting
programs (of any type) depends on the type of Windows you are running (3.1, NT, 95) and
on your mode of running it. Thus, if you use the Windows 95 shell (standard with Windows
95 and possible with Windows NT)), click on the Start button and choose Programs/Allegro
CL 3.0 for Windows/Allegro CL from the submenus that appear. If you use a Program man-
ager (standard with Windows 3.1), double click on the application icon to start Lisp. If you
use a different shell or method, start Allegro CL as you do other programs.

It is possible to save an image (by choosingSave Image... from the File menu -- see
section 2.15Images below). To start the saved image, you first start Allegro CL in the usual
way and then chooseLoad Image... from the file menu. Specify the saved image file
(which will have extension.img) to the dialog that appears.

2.2 Tools available on startup

After Allegro CL for Windows starts up, its application windows should look something
like the following picture. But not exactly like. You will see colors if your machine has a
color monitor. The [date and time] in the Toploop will be a real date and time (they are the

2 - 2 ALLEGRO CL for Windows: Programming Tools

date and time when the distribution was created and serve to exactly identify the distribu-
tion you received). Information about patches will appear in the banner (the text printed
before the initial prompt) if patches are loaded. And there may be other minor differences.)

The four labeled features are described in sections 2.3The Toploop window, 2.5The
menu bar, 2.6The toolbar, and 2.7The status bar.

2.3 The Toploop window

The Toploop itself is not so much a tool as an integral part of the Lisp system. Most inter-
action with Lisp proceeds via the Toploop, although not necessarily through the Toploop
window. The Toploop is so called because it is the highest level of control in the Lisp ses-

 Menu bar Tool bar

 Toploop window Status bar

ToploopT
 Toploop window Status Bar

Toploop window Status Bar

ALLEGRO CL for Windows: Programming Tools 2 - 3

Toploop

sion and consists in essence of a loop which reads expressions from windows, evaluates
them and then prints the results. It also manages other facilities such as a history list and
Clipboard.

You can cause a new Toploop to begin executing by calling thetoploop function. For
details of how to do this and other aspects of controlling the Toploop, refer to section 2.16.5
below in this chapter.

The title of the window appears in the bar at the top. Throughout this Guide, phrases
such as “the Toploop window” are used to abbreviate “the window whose title is Toploop”
and also “the window through which interaction with the Toploop occurs”.

Initial package
When Lisp starts up, the current package is thecommon-lisp-user package (nick-
namedcl-user and user). This package uses thecommon-lisp , allegro , and
common-graphics packages.

Startup files
When Lisp is started up it looks for two files in the directory where the image is located and
loads them if it finds them. The two files are:

2 - 4 ALLEGRO CL for Windows: Programming Tools

• prefs.lsp or prefs.fsl (i.e. a Lisp source file or a compiled Lisp file with name
prefs). This file must be written by choosingSavefrom the Preferences dialog
(displayed by choosingMain Preferences from the Preferences menu).

• startup.lsp or startup.fsl (i.e. a Lisp source file or a compiled Lisp file with name
startup). You create this file and you can put any valid Lisp forms in it.

Theprefs file is loaded first. The forms in this file are read and evaluated using theload
function. Theprefs file is written by Allegro CL for Windows based on how you customize
your environment while Lisp is running. You typically start Allegro CL for Windows the
first time, set things up to your liking and then bring up the Preferences dialog (by choosing
Main Preferences from the Preferences menu). The dialog (which is a tab widget with 8
tabs) reflects the current state of your Lisp and has buttons to saveprefs.lsp (and to apply
changes made in the dialog to Lisp when you have changed values).

You can create astartup file by choosingNew from the Files menu (which creates a Text
Edit window named Untitled), putting the forms you want in it, and choosingSave from
the File menu. When you are prompted in a dialog box for a filename to save to, enter
startup.lsp.

You can compile either file by choosingCompile... from the file menu after you have
written the sources.

Please note the following:

• Because the files are loaded byload , you cannot change the current package
from within the file (sinceload binds*package*).

• You do not need to have either file. If Lisp is unable to find either file or both files,
it starts up without them.

• It is common to put a form similar to(format t "Read startup~%") in
the startup file to remind yourself that the file was read. (The message will be
printed in the Toploop window when Lisp starts up.)

• Large startup files. Loading a large startup file can take a long time. You may
prefer to save a new image and start Lisp from that, instead of loading Lisp
Startup every time.

• Technical note. The*session-init-fns* may be used to achieve a similar
effect to Lisp Startup. See the description of that variable in the Online Manual.

ALLEGRO CL for Windows: Programming Tools 2 - 5

Toploop

Typing
The Toploop window initially contains the banner, a greater-than sign (>) and a blinking
vertical bar. The greater-than sign is a prompt displayed by the Toploop to indicate that it
is ready to take part in an interaction. Lisp displays a new prompt at the end of the Toploop
window after the completion of every interaction.

The blinking vertical bar is the insertion point into the window. You can move the inser-
tion point using the arrow keys or by moving the pointer and clicking. For ease of accurate
positioning, the pointer is shaped like an I-beam when it is inside the window. When you
type on the keyboard the characters will be inserted at the insertion point. The Backspace
key deletes the character to the left of the insertion point while the Delete key deletes the
character to the right of the insertion point. Pressing the Enter key (next to the alphabetic
keyboard) causes the insertion point to be moved down to the next line and a suitable inden-
tation to be provided, to help make code typed into the window more readable. If a com-
plete form has been entered, pressing Enter will cause it to be evaluated. Pressing Alt-Enter
(equivalently, the Enter key next the numeric keypad) has the same effect as Enter when
typing to the Toploop window.

At any time, you can erase anything in the Toploop window by either positioning the
text pointer just beyond the character(s) you want to delete and hitting the backspace key
as many times as required. Or you may simply select what you want to erase and then press
either the Backspace or the Delete key. Besides deleting selected text, the Delete key deletes
character in front (rather than behind) the cursor.

Certain key combinations cause special actions to take place, such as performing Editor
operations or executing menu commands. These generally involve the Alt key being
depressed in conjunction with other keys and will not be discussed in detail here.

Text Editor commands. Because the Toploop window is a Text Editor window,
any Text Editor command can be used in the Toploop window. The Text Editor
is described in Chapter 3 of this Guide.

The copy down feature
If you place the cursor at the beginning of a previously evaluated form and press Enter, the
form is copied down to the latest toploop prompt. Pressing Enter again evaluates the form.
You can edit the form as well, and evaluate it by positioning the cursor at the end and press-
ing enter.

2 - 6 ALLEGRO CL for Windows: Programming Tools

Finding the Toploop prompt
It is possible to delete the prompt in the Toploop window (typically by mistake). It also may
happen that you cannot (easily) find the Toploop window or the end of the Toploop window.
In any case, evaluating (anywhere)

(top:find-toploop-prompt)

causes the Toploop window to be exposed, the cursor to move to the bottom of the window,
and a new Lisp prompt to be generated. Further, each built-in comtab binds Control-Shift-
N to this function, so that key combination will expose the Toploop window and produce a
new prompt whenever the input focus is in any text window (such as the Toploop window,
file editors, or the Help window). ChoosingNew Toploop Prompt from the Tools menu
also calls this function, as does clicking over the leftmost (in the default) toolbar button (the
one with the> sign).

Symbol completion
When typing in the Toploop or other Text Edit window, pressing Control-. will cause a win-
dow of possible completions to be displayed. For example, if you have typed:

(memb

Pressing Control-. causes a window to be displayed with the following items:

a Member

b Member-If

c Member-If-Not

e Memberq

f Memberql

Each symbol that the system knows about that is a potential completion is displayed in
this window. Pressing the letter associated with a choice or double-clicking over a choice
causes the symbol to be completed in the Text Edit window. Thus, if we enterb, the com-
pletionmember-if is entered and we can continue.

The search will start with symbols available in the current package. If no completion is
available, other packages will be searched if the variableacl:*symbol-
completion-searches-all-packages* (documented in the Online Manual) is

ALLEGRO CL for Windows: Programming Tools 2 - 7

Toploop

true. (The correct package qualifier will be added automatically.) If that variable isnil ,
the search will stop without considering other packages. Note that the search of other pack-
ages can take quite a while. Pressing Escape will abort the search.

If there is only one completion, it is entered without a window popping up. If there are
more than*max-symbol-completion-choices* (initial value 50, documented in
the Online Manual) possibilities, that fact is reported in the status bar and no window is dis-
played.

You can reject all suggested completions by clicking away from the Completions win-
dow. If there are no completions, that fact is reported in the Status Bar and no window is
displayed.

Using super-brackets
Normally you write Lisp expressions using parentheses, (and). Allegro CL for Windows
also has super-brackets represented by the square brackets [and]. A closing super-bracket
closes off all opening parentheses until either there are none left or an opening super-
bracket is found. Thus the following expressions are all equivalent:

(defun foo (a b) (cons (list a) b))
(defun foo [a b] (cons (list a) b)]
(defun foo (a b) (cons (list a) b]

An opening super-bracket must be matched by a closing super-bracket, not a closing
parenthesis. Closing super-brackets are very convenient at the end of a function definition
when you simply want to close all open parentheses. Used sparingly, they help you to avoid
unbalanced parentheses errors in the Text Editor and make your programs easier to type in,
but used to excess they can be confusing and a source of errors. You should regard them as
a useful shorthand notation.

Note that super-brackets are not standard Common Lisp so code that uses
them will not be portable to other implementations.

2 - 8 ALLEGRO CL for Windows: Programming Tools

2.4 Exiting From Lisp

TheExit command on the File menu is used to exit completely from Lisp:

If you attempt to exit when the variable*top-query-exit* is non-nil , Lisp asks
you if you really want to exit, and gives you the option of not doing so. This acts as a safety
feature in case you inadvertently chooseExit . You may change the value of this variable
either by usingsetq in the usual way, or by using the Toploop Preferences dialog as
described in section 2.14.

Another way to exit from Lisp is to close all Toploop windows, as described under the
next heading.

Closing the Toploop window
TheClose command on the File menu is described with the Text Editor in Chapter 3, but it
behaves slightly differently when Toploop is the active window. ChoosingClose causes the
most recent version of the Toploop to be exited. There may be several Toploops active at

ALLEGRO CL for Windows: Programming Tools 2 - 9

Toploop

once, created for instance by using thetoploop function in a Lisp program (see section
2.16.5 below). Attempting to exit from the outermost Toploop invokes theExit checking
mechanism to make sure that you really want to leave Lisp.

Shortcut: you can close a window by double-clicking in the Control-menu box
in the upper left corner.

2.5 The menu bar

The Allegro CL menu bar displays menus available while using Allegro CL for Windows.
The menus are standard Windows menus.)

You can display a menu with the mouse (by clicking on the menu title in the menu bar).
You can also display them from the keyboard by pressing the Alt key and the underlined
letter in the menu title (F for the File menu, E for the edit menu, etc.) Keep the Alt key down
while the menu is displayed. Most entries will have an underlined letter and pressing that
letter while the Alt key is down is equivalent to choosing the menu item.

It is possible to add your own menus to the menu bar. See the description of menus in
theCommon Graphicssection of the Online Manual for more information.

The contents of menus are fairly self-explanatory. If a menu item acts on a window or
on a selected piece of text, it is the currently active window or currently selected text that
is acted upon.

Note that many choices, particularly in the Help and Tools menus, act on the selected
object or the object nearest the text cursor. Thus, choosingOnline Manual from the help
menu displays the online documentation for the symbol nearest the text cursor.

Keep you eye on the status bar, where messages about what Lisp is trying to do and,
when it cannot do something, explanations of why it can’t are printed.

 Menu Bar

2 - 10 ALLEGRO CL for Windows: Programming Tools

2.6 The toolbar

The toolbar is a line of button widgets displayed under the menu bar. Clicking a button
causes a specific action, often one that can also be caused be choosing a menu item from
some menu. For example, the leftmost button (displaying a>) exposes the toploop window
and moves the cursor to a fresh prompt, just like choosingNew Toploop Prompt from the
Miscellaneous submenu of the Tools menu.

How to display or hide the toolbar
The toolbar is displayed automatically when Lisp starts up. ChoosingToggle Toolbar from
the submenu displayed after choosingToolbar/Status Bar from the Tools menu will hide
the toolbar if it is displayed and display it if it is hidden. Pressing the F12 key has the same
effect as choosing the menu item.

Note that the toolbar will be in front of any window whose parent is*lisp-main-
window* . You may on occasion wish to hide the toolbar in order to see more of a window
that is partially obscured by the toolbar. The F12 key is particularly useful for this purpose.

What the toolbar buttons do
As you move the mouse cursor over the buttons on the toolbar, look at the status bar, where
the effect of clicking over the toolbar button is described. Also, if the Tooltips facility (see
the description of Tooltips in the Online Manual) is on, a small tooltip pop-up window with
a word or two describing the button is displayed when the cursor is over the button.

 Tool bar

Tool bar

ALLEGRO CL for Windows: Programming Tools 2 - 11

Toploop

Editing the toolbar
ChoosingToolbar Palette from the submenu displayed by choosingToolbar/Status Bar
from the Tools menu displays the following dialog:

While this dialog is displayed, the toolbar is in edit mode, meaning clicking over the but-
tons do not have their usual effect. Instead, pressing the left mouse button over a toolbar
button allows you to move it, either around the toolbar or to the toolbar palette. There are
several extra buttons on the toolbar palette which you can add to the toolbar if you wish.

To see what the extra buttons do, move the mouse cursor over them and look in the status
bar, where a description will be printed.

When you have finished editing, click on theHide button. Once the palette is hidden,
the toolbar returns to normal operation.

2 - 12 ALLEGRO CL for Windows: Programming Tools

2.7 The status bar

The status bar is a static text dialog that appears at the bottom of the screen when Lisp is
running. Messages printed there provide useful information while Lisp is running. For
example, the following information is displayed:

• When the mouse cursor is over a button on the toolbar, the status bar contains a
description of the effect of clicking over the button.

• When choosing a menu item has no effect, a reason will typically be displayed in
the status bar. (For example, choosing Manual Entry from the Help menu should
display the entry in the Online Manual for the symbol nearest the text cursor. if
there is no such symbol, or if the nearest symbol is not described in the Online
Manual, that information is displayed in the status bar.)

• When entering a form, typing a space after the operator causes the argument list
for the operator to be printed in the status bar. The contents of the Status bar may
change as you type in argument values but typing an extra space or Control-Z will
cause the argument list to return.

Status Bar

ALLEGRO CL for Windows: Programming Tools 2 - 13

Toploop

Note that the message in the status bar often changes upon moving the mouse, typing a
character, or choosing a menu item. Do not expect the message to stay in the status bar for
long. If you need time to read the message, avoid moving the mouse or typing.

How to display or hide the status bar
The status bar is displayed automatically when Lisp starts up. ChoosingToggle Status Bar
from the submenu displayed after choosingToolbar/Status Bar from the Tools menu will
hide the status bar if it is displayed and display it if it is hidden. Pressing the F11 key has
the same effect as choosing the menu item.

Note that the status bar will be in front of any window whose parent is*lisp-main-
window* . The F11 key is useful for temporarily hiding the status bar to expose something
else.

Details of messages in the status bar
Two variables,cg:*lisp-message-print-length* andcg:*lisp-message-
print-level* control the printing of lists in the status bar. They are formally defined
in section 2.16.6The status bar below. They work like*print-length* and
print-level : when the value is a positive integer, only that many items (for length)
or levels (for level) are printed in a list, with additional items or levels indicated by suspen-
sion points (...). If the value isnil , all items or all levels are printed.

Sending your own message to the status bar
The functioncg:lisp-message will print a message in the status bar. Its argument list
is (format-string &rest format-args). It is formally defined in section 2.16.6
The status bar below. It is not useful to call this function at the top level (since the status
bar prints the result of a function evaluated at the top level, that message will immediately
replace your message). Instead, you can use this function to print messages in the status bar
when, say, the mouse passes over a dialog item in one of your dialogs (see the Common
Graphics section of the Online Manual for more information).

Modifying the status bar
You can change the number of lines in the status bar or the font used for messages. Dialogs
to accomplish these ends are displayed by choosingStatus Bar Lines or Status Bar Font
from theToolbar/Status Bar submenu of the Tools menu or the associated choices from
the right-button menu when the cursor is over the status bar.

2 - 14 ALLEGRO CL for Windows: Programming Tools

2.8 Evaluating expressions

Pressing Alt-Enter when a complete form is selected in an editor window causes the Lisp
reader to read an expression and print the value in the Toploop window. Note that the form
itself is not complied to the Toploop window.

In the Toploop window, pressing Enter (or Alt-Enter) at the end of a complete form has
the following effect:

• If the insertion point is in the Toploop window and after the most recent Toploop
prompt, the reader will back up to the prompt and then read a single expression.
Lisp will evaluate the expression and print its results at the end of the Toploop
window followed by a new prompt.

• If the insertion point is in the Toploop window but before the most recent prompt,
the reader will read a single expression beginning at the insertion point and then
copy this expression to the end of the Toploop window, placing the insertion point
after it. This action is termedcopy down and is useful for maintaining a transcript
of the session in the Toploop window and for repeated evaluations of similar
forms (since the form can be edited after it is copied). Pressing Enter again causes
Lisp to evaluate the expression.

Dialog boxes
If the active window is a dialog box (such as the Save dialog box illustrated below), it will
often have a large button containing a word likeOK . Pressing Enter is equivalent to click-
ing that button with the mouse. Note that if the dialog is modal (many pop-up dialogs are),
you cannot type to another window until you have chosenOK (or pressed Enter) orCancel
(another typical button, meaning return to the state before the dialog was displayed). The
following dialog, displayed when you selectExit from the File menu, is a modal dialog.

ALLEGRO CL for Windows: Programming Tools 2 - 15

Toploop

Interrupting Lisp
Pressing the Break key (sometimes labeled ‘‘Pause Break’’) will interrupt the evaluation of
a form and give you the option of aborting the computation. You may have to hold the key
down for a few seconds and it may take some more seconds for the interrupt to be pro-
cessed. When that happens, a Restarts dialog box will appear announcing the interrupt. A
Restarts dialog is illustrated below.

The read function
One situation in which the Toploop does not have control is when the reader is invoked by
calling theread function (see the description onread in online help). The expression
read is then returned byread .

Dealing with errors
If Lisp detects an error while reading or evaluating a form it will display a dialog box con-
taining a description of the error, the available restarts, and several buttons. For example,
evaluating the form(car 8) signals an error and displays the following dialog box:

2 - 16 ALLEGRO CL for Windows: Programming Tools

In a Restarts dialog box, there are usually buttons labelledEnter Debug andAbort and.
Clicking Abort will normally return you to the Toploop prompt. ClickingEnter Debugger
will enter the Debugger. The available restarts are listed in a pane in the middle of the dia-
log. The restarts usually include equivalents of theAbort button (Return to Top Level ...)
and theEnter Debugger button (Enter Debugger). If the error was continuable (as(car
8) is not) there will also be restarts that allow computation to continue. A restart can be
chosen by selecting it (clicking the mouse on it) and clicking theInvoke Selected Restart
button. Some restarts cause additional dialogs to be displayed, which must be dealt with
before computation restarts.

Note that the error was caused by an erroneous call to the functioncar but the error
message mentionsrplaca andrplacd rather thancar . This is common in Lisp where
functions often call other functions immediately. If you are unsure of the cause of the error,
you can use the debugger to find the actual sequence of functions called.

The Debugger. Chapter 6 describes the Debugger, and includes more informa-
tion about error handling and recovery.

ALLEGRO CL for Windows: Programming Tools 2 - 17

Toploop

2.9 Loading and Compiling Files

Choosing the menu selectionsLoad... orCompile... causes a file selection dialog to appear
allowing you to select the file or files you wish to load or compile. The file selection dialog
a standard MS Windows Common Dialog. We describe its properties in more detail below.

You can also load and/or compile files with theload andcompile-file functions.
Those functions take filename arguments and do not cause a dialog to be displayed.

Loading Files
TheLoad... command on the File menu allows you to read in and evaluate one or more Lisp
files. ChooseLoad... and Lisp displays this dialog box:

First select the directory from the widgets on the right. You can specify which file exten-
sions should be shown (by default, only files with extension.lsp are shown). Then you can
choose one or more files from those listed. Left-click on the file you want to load. The com-
bination Shift-left-click selects all files between one already chosen and the one clicked
over. The combination Ctrl-left-click chooses an additional individual file. Left-click also
chooses a single file (unselecting all others except the one clicked over). You can also type
the name in the File Name box. Click overOK to load the selected files and overCancel
to abort the load entirely.

2 - 18 ALLEGRO CL for Windows: Programming Tools

Load... uses theload function to load the file.load may be called recursively. It is
both convenient and good practice to divide your program into several files, and load them
by loading a single file which itself callsload several times to read each of the program
files in turn.

Errors while loading
If an error is encountered while loading a file, you have several choices. Consider the fol-
lowing example. Suppose the filetest.lsp contains the following forms:

(defparameter foo 5)
(defparameter bar 10)
(if (car 8) (setq bar 20)) ; Note the invalid form (car 8)
(setq foo 100)

Now try to loadtest.lsp by choosingLoad... from the File menu and specifyingtest.lsp.
Loading will proceed until the erroneous form in line 3 --(car 8) --is reached. Then Lisp
will signal an error about(car 8) and provide a Restarts dialog similar to the following:

The error encountered is identified at the top (a bad argument tocar causes an error in
eitherrplaca or rplacd). The three restarts have the following effects:

• Enter the debugger and edit d:\tmp\err.lsp. Choosing this restart brings up a
Debugger window and opens an editor window to the offending file. The cursor
will be at the form that caused the error. Note that youcannot save this file while
the Debugger window is open. You mustAbort out of the debugger, save the file,
and then redo the load. (Some will consider it a misfeature that you cannot save

ALLEGRO CL for Windows: Programming Tools 2 - 19

Toploop

the file while the debugger is open, but being able to save a file while it is open
to the loader will, unfortunately, cause bigger problems.)

• Continue loading from #<file-stream ...>. Choosing this restart causes the
loader to skip the offending form and start loading again from the next form. This
works in our simple case (when the load completes, foo will be 100 andbar will
be 5) but note that later forms often depend on earlier forms being evaluated
correctly, so this choice can lead to more errors.

• Return to Top Level (an ‘abort’ restart) . The load is cancelled and Lisp returns
to its state before the load was started.

TheAbort button is equivalent to choosing theReturn to Top Level restart. TheEnter
Debugger button brings up a Debugger window but does not open the file.

Loading is done byload , which is described in the Online Manual.

Compiling files
ChoosingCompile... from the File menu brings up a dialog box asking for the files you
want to compile, similar to the following:

First select the directory from the widgets on the right. You can specify which file exten-
sions should be shown (by default, only files with extension.lsp are shown). You can
choose more than one file in the directory to compile. Left-click on the first file and then
the combination Shift-left-click selects all files between one already chosen and the one
clicked over while the combination Ctrl-left-click chooses an additional individual file (we
have selected two in the illustration using Ctrl-left-click). Left-click also chooses a single
file (unselecting all others except the one clicked over). You can also type the name in the

2 - 20 ALLEGRO CL for Windows: Programming Tools

File Name box. Click overOK to compile the selected files and overCancel to abort the
compile entirely. (The Network button, which may appear below the Cancel button but is
not illustrated, allows you to add additional directories in which to find files.)

When you click onOK , another window appears asking for the name of the compiled
file. The appearance of this dialog depends on what kind of Windows you are running. With
Windows 95, it looks like the illustration below while with Windows 3.1, it looks like the
dialog above. (But only one file can be chosen.) All listed files will be compiled into the
one specified file. This window lists otherfsl (compiled Lisp) files so that you can avoid
overwriting an existing file. Note that if you do specify the name of an existing file, Lisp
will signal a continuable error asking if you really wish to overwrite the existing file.

Now click OK and the files specified will be compiled.

Canceling
At any one of these steps, you can click on theCancel button to abort the process. No files
are actually compiled until you clickOK in theFSL File to Create window.

ALLEGRO CL for Windows: Programming Tools 2 - 21

Toploop

Errors while compiling
If the compiler detects an error while compiling, a Restarts window will be displayed.
Sometimes you can continue from the error, in which case the offending form will be cor-
rected or ignored.

2.10 The Window menu: changing and managing windows

The Window menu lists the windows in the current environment. The Manage choice dis-
plays a submenu of operations on the currently selected window.

The windows on the menu are divided into two groups, the first being those windows
available by default when Lisp is started up and the second being those opened subse-
quently. A check mark is placed beside the name of each window if changes have been
made to the window since it was opened or last saved. Here is the Windows menu in a Lisp
session where a Text Edit window to the filetest.lsp has been opened:

The initial windows. Of the four windows (other than the Toploop) which are
initially available, the History and Clipboard windows are described below in
this chapter; the Help window is described in Chapter 1; and the Find Definition
window is described in section 3.4.

TheManage submenu is also displayed. It operates on the selected window. The Sec-
ond, Third, and Fourth choices bring to the top the second, third, or fourth windows in the
occlusion stack (the stack that orders the windows that are displayed).

2 - 22 ALLEGRO CL for Windows: Programming Tools

2.11 Changing Packages

The Packages menu shows all the packages available in the system, with a check mark
beside the current one. You can change the current package by choosing a package name
from the Packages menu.

Symbol visibility. Changing packages can cause symbols to no longer be visible,
so you should exercise care if you switch to another package. Unless you really
need to change packages, stay in thecommon-lisp-user package.

The in-package function. From within your programs you can change pack-
age usingin-package . The current package is held in*package* . Pack-
ages are described under the heading Packages in the Common Lisp portion of
the Online Manual.

Packages in files. Text Edit windows may have a package associated with them.
If when you open a file into a Text Edit window, the first form is an in-package
form, the current package will be set to that package while that is the active win-
dow. The system remembers the package for each window so the current pack-
age changes while you move about windows. When the selected window is a
Text Editor window, the Packages menu will have a check beside its package.

2.12 The History dialog

The history dialog is a record of the most recent Toploop interactions. When Lisp reads and
evaluates a form, it copies the original form to the history list, discarding the oldest inter-
actions when the list becomes too large. The history dialog displays this list. It is displayed
by choosingHistory from the Window menu. An example is shown next:

ALLEGRO CL for Windows: Programming Tools 2 - 23

Toploop

The dialog contains 3 panes:

History of Evaluated Forms, at the top, displays the forms that have been eval-
uated. It is a scrollable pane andtop:*top-history-limit* forms are
displayed. Clicking on a form in this pane displays it in the Form pane, while
double-clicking evaluates it.

Form, in the middle, is an editable text widget. You can display a previously-
evaluated form there (by clicking on the form in theHistory pane) and edit it, or
type a new form directly. Once a form is entered, you can have it evaluated by
clicking on theEvaluate button or but pressing Enter. To clear the contents of
the Form pane, selectNew History Window Form from theMiscellaneous
submenu of the Tools menu. (Ctrl-Alt-N is the keyboard equivalent.)

Values, at the bottom, displays the value(s) returned by the selected form in the
History pane. Only the value(s) of one form can be displayed, but if that form
returned multiple values, all are displayed. Selecting a value and clicking on the
Input button causes the value to be copied to theForm pane.

TheEvaluate button causes the form in theForm pane to be evaluated. TheInput but-
ton causes the value selected in the Values pane.

Pressing Tab changes the pane that is selected. Alt-H, Alt-F, and Alt-V selects the spec-
ified pane. The arrow keys move about the selected pane.

2 - 24 ALLEGRO CL for Windows: Programming Tools

History dialog functions and variables. See section 2.16.3The history mech-
anism for information on variables and functions associated with the History
dialog.

2.13 The Lisp Clipboard

The Windows Operating System has a special area called a Clipboard which can be used to
hold a single object, frequently a piece of text. Lisp extends this idea by providing its own
Clipboard capable of holding several items at once. The Lisp Clipboard behaves as a stack
of Lisp objects which may be manipulated from the Toploop menus. Its principal use is as
a place to hold objects while moving them between windows. To display the Clipboard win-
dow, chooseClipboard from the Windows menu.

Cut andCopy operations push the selection onto the Clipboard, discarding the bottom
Clipboard item if the total number of items would exceed*lisp-clipboard-
limit* . The value of this variable can be set in the Toploop preferences dialog box, dis-
played by choosingToploop... from the Preferences menu.Paste operations copy the top
item of the Clipboard into the relevant window. They do not affect the contents of the Clip-
board.

The Clipboard window is a dialog box with four buttons. Here is the Clipboard window
after we have chosen Values a couple of times and Input once from the History window dis-
played above:

The top of the stack is at the top of the window. As shown, there are four actions possible
from the Clipboard window, identified by the four buttons:

ALLEGRO CL for Windows: Programming Tools 2 - 25

Toploop

• Copy to Top. Clicking this causes the selected form to be copied to the top of the
Clipboard. (This will cause the form to appear twice in the window.)

• Pop. Clicking this removes the top item from the Clipboard stack, discards it and
selects the new top item.

• Evaluate. Clicking this evaluates the selected item and pushes the first value it
returns onto the top of the Clipboard. The value ofx is 10, so clickingEvaluate
when the formx is selected will cause 10 to appear at the top. Note: not all
expressions on the Clipboard can be meaningfully evaluated. ClickingEvaluate
while (10) is selected will signal an error, for example.

• Convert. Clicking this takes the current selection, converts it between being a
string and being the Lisp expression given by the contents of that string, and puts
the result to the top of the Clipboard. We explain this in the next paragraph.

A feature of copying to the Clipboard from a Text Edit window (such as the Toploop
window) is that the expression is made into a string. Suppose the form(cons 1 2) is
selected in the Toploop window:

You can copy it to the Clipboard by choosingCopy from the Edit menu but when it is
copied, it is converted to a string. Here is the Clipboard window afterCopy is chosen (we
have popped the other items off):

ChoosingConvert while "(cons 1 2)" is selected causes the form(cons 1 2)
to be placed on the top of the Clipboard. Here is the Clipboard afterConvert is clicked:

2 - 26 ALLEGRO CL for Windows: Programming Tools

Note that when the selection in the Clipboard is a string, theEvaluate button is inoper-
ative (since a string evaluates to itself so evaluation does nothing new). Also, choosing
Convert when a non-string is selected makes the selection into a string and puts it on top.

Edit menu choices and the Clipboard
As we said above,Copy andCut in the Edit menu put things onto the Clipboard.Pop in
the Edit menu pops the top item on the Clipboard off (just like clicking thePop button).
Paste copies the top item on the Clipboard to the active window.

The commandEvaluate Clipboard on the Tools menu may be used from within Editor
windows to evaluate the top Clipboard item (regardless of which item is selected, it is the
top item that is evaluated). The values returned are printed into the Toploop window and
the first value returned is pushed onto the Clipboard stack.

The Windows Operating System Clipboard
Lisp tries to map the top of its Clipboard onto the Windows Operating System Clipboard.
On entry to Lisp, the contents of the Windows Operating System Clipboard are pushed onto
the Lisp Clipboard as a Lisp string (if possible). On exit from Lisp, the top item on the Lisp
Clipboard is copied to the Windows Operating System Clipboard provided that item is a
Lisp string. The correspondence between the Lisp and the Windows Operating System
Clipboards is maintained while Lisp is running, so you can paste from the Lisp Clipboard
in the usual way, provided again that the top item of the Lisp Clipboard is a string. Likewise,
cutting or copying from elsewhere puts the selected object into the Lisp Clipboard as a
string.

2.14 Setting your preferred Lisp environment

The preferred values of control parameters for Allegro CL for Windows are collectively
known aspreferences. Each control parameter is specified by the value of a particular vari-
able, and may therefore be changed in a program usingsetq . The large number of these
variables makes them difficult to remember and typing their names is rather tedious, so Lisp
makes it easy to change many of them by providing preferences dialogs. Pull down the
Preferences menu and there are two choices: Main Preferences and Interface Builder Pref-
erences. The Interface Builder preferences are discussed in the Interface Builder printed
manual (in Volume 1). It will not be further discussed here.

ALLEGRO CL for Windows: Programming Tools 2 - 27

Toploop

ChoosingMain Preferences displays the following Tab Control dialog:

There are eight forms, each with its own tab. Clicking on a tab displays the associated
form. We have displayed the Printer form in the illustration.

There are four buttons at the bottom of the dialog:

Apply. If you have made any changes in any of the preference form, clicking on
Apply will cause the current Lisp environment to be updated to reflect your
changes. If no changes have been made to any form, this button is masked and
clicking over it has no effect. Clicking onSave (see below) also applies all
changes.

Revert. If you have made any changes to any preference form, but have not
applied the changes by clicking onApply (or Save), clicking onRevert returns
all the forms to their state before they were last applied or saved (or initial state
if you have never applied or saved them). If no changes have been made or all
changes have been applied or saved, this button is masked and clicking over it
has no effect.

Save. Clicking onSave causes a dialog to be displayed that allows you to choose
a file where the preferences will be saved. The default filename and location is
pref.lsp in the directory where Lisp is installed. We do not recommend that peo-
ple edit their preferences files (instead, change preferences with the dialog and
save the changes, thus overwriting the file). Code at the beginning of the file

2 - 28 ALLEGRO CL for Windows: Programming Tools

checks the version of Allegro CL, and warns you if the version running does not
match the version stored.

Close. Closes the Preferences dialog. Unapplied changes will be lost.

The individual widgets on the form can be:

Check-box widgets. Usually associated with boolean variables. Checked means
the variable should be t. Unchecked means the variable should be nil. Change by
clicking over the box or the variable name.

Editable-text widgets . You can place the cursor in the widget (by click-
ing in it) and then edit as desired.

Combo-boxes (with down arrows to the right). Clicking in the widget or over
the arrow displays a menu of choices. Click on a choice to select it or away from
the menu to leave the value unchanged.

Font buttons. Short, wide buttons that name a variable associated with a font.
Clicking on this button displays a font choice dialog. If a new font is chosen, it
becomes the value of the variable (when the references are applied or saved). The
button label is printed in the current or chosen font.

The variables associated with the various preferences are documented in this manual
(see the index) or in the Online Manual.

2.15 Images

An image is so called because it is a copy, or image, of the Lisp workspace at a particular
time, saved onto disk as a large file. If you save an image you can reload it at a later time
and continue your work without having to read all your source code in again. Note that
images are large: often several Mbytes.

Saving an image
To save an image, chooseSave Image... from theImages submenu of the File menu. Lisp
requests a name for the file containing the saved image:

ALLEGRO CL for Windows: Programming Tools 2 - 29

Toploop

(This is the Windows 3.1 dialog. The Windows 95 dialog looks different but has the
same components.) Type a name in the box provided and clickSave. Lisp closes all the win-
dows on the screen, performs two garbage collections, and saves a copy of the Lisp work-
space in the specified file. A new version of the Toploop window is then opened and the
session can be continued.

Two garbage collections. Some extra cleaning up of disposable symbols is done
between the two garbage collections.

Image names. You can give an image file any name you want. We encourage
you to add.img as the extension to distinguish image files from other files.

Loading an image
Load Image... is the reverse ofSave Image.... That is, the whole of the current workspace
is replaced by the contents of the loaded image, so the state of the workspace just after load-
ing an image is identical to that which existed when the image was originally saved.

Technical note: the functions associated with these menu choices,save-
image andload-image , are documented in the Online Manual.

2 - 30 ALLEGRO CL for Windows: Programming Tools

Create Standalone Form
Choosing this item brings up the following dialog:

This dialog is most useful for users who have the Professional version of Allegro CL
(and thus have the ability to create runtime images) but it is available in Standard Allegro
CL as well. Making the various choices allows you easily to include or leave out features
in an image. If you have runtime, then (as described further in the Runtime Generator man-
ual), this form allows you to create a standalone image. Even if you do not have Runtime,
you can create images which will include specified functionality.

ALLEGRO CL for Windows: Programming Tools 2 - 31

Toploop

2.16 Implementation details

This section was chapter 2 of the manualInside Programming Tools in release 2.0.

2.16.1 Starting Allegro CL for Windows

The typical way to start Allegro CL is to double-click over the icon in the Allegro CL pro-
gram group. However, the actual command line, which can be typed to the dialog displayed
by choosingRun from the menu displayed by the Start button in Windows 95, or from Pro-
gram Manager File menu in Windows 3.1, or, to a DOS prompt, is as follows:

c:\allegro\lisp.exe c:\allegro\allegro.img

Note:

• The directoryc:\allegro is the default location when installing Allegro CL for
Windows. Of course, if you specified a different location, you should use that
instead ofc:\allegro.

• allegro.img is the initial image file installed with Allegro CL. You may specify
any .img file instead ofallegro.img. In particular, you can specify any.img file
created with a call tosave-image (or by choosingSave Image from the
Images submenu of the File menu).

2.16.2 Toploop variables and functions

The operations of reading, evaluation and printing are controlled by toploop variables.
Their effects are limited to the toploop. For example, rebinding *top-print-length *
only affects output from the toploop; conversely, rebinding *print-length * has no
effect on toploop printing.

The bindings oftop:*top-read *, top:*top-eval * and top:*top-print*
must be suitable as the first argument offuncall .

Note: many symbols described in this chapter are in thetoploop package.
This package is not used by default by thecommon-lisp-user package and

2 - 32 ALLEGRO CL for Windows: Programming Tools

is not in the default use list ofin-package or make-package . Therefore,
when you refer to these symbols, you must qualify them (withtoploop: or
top:) or use thetoploop package withuse-package .

toploop-window [Variable]

Package: toploop

■ The value of this variable is the toploop frame window, whose single child
pane is the stream which is the value of*terminal-io* .

top-print-level [Variable]

Package: allegro

■ controls the maximum depth to which results of evaluation of input are
printed by the toploop. Its initial value is 4.

top-print-length [Variable]

Package: allegro

■ controls the maximum length to which results of evaluation are printed by
the toploop. Its initial value is 8.

top-read [Variable]

Package: toploop

■ is bound to the function used by the toploop for reading.

top-eval [Variable]

Package: toploop

■ is bound to the function used by the toploop for evaluating input.

top-print [Variable]

Package: toploop

■ is bound to the function used by the toploop for printing.

top-prompt [Variable]

Package: toploop

■ is a format string used to print the toploop prompt.format is called
with five arguments:

(format t top:*top-prompt*

ALLEGRO CL for Windows: Programming Tools 2 - 33

Toploop

transaction-number top:*top-level* nil)

transaction-number is an integer which is incremented each time the
user is prompted for input.nil is included in the argument list to ensure cor-
rect operation of ~V. The default value oftop:*top-prompt * is
“~%~*~V@{>~}”.

top-level [Variable]

Package: toploop

■ is an integer giving the depth of the current toploop invocation.

top-query-exit [Variable]

Package: toploop

■ if this variable is non-nil , the user is prompted for confirmation when an
attempt is made to quit the Lisp application.

toploop-comtab [Variable]

Package: toploop

■ is the comtab used by the toploop.

find-toploop-prompt [Function]

Arguments:
Package: toploop

■ Calling this function causes the toploop window to be exposed, a new Lisp
prompt to be generated, and the cursor to move to the position after the new
cursor. Calling this function is a quick and easy way to get to the main Lisp
prompt. It is also convenient when the prompt has been deleted for some rea-
son.
■ Each of the built-in comtabs binds the key combination Control-Shift-N to
this function, so that key combination will find a fresh Lisp prompt whenever
the input focus is in any text window (including the toploop, file editors, and
the Help window).

2 - 34 ALLEGRO CL for Windows: Programming Tools

2.16.3 History mechanism

The toploop retains a history of every form input to it, and the results of evaluation. Entries
in the history list can be inspected, edited and re-evaluated. An interface is provided so that
user programs may also use the history facility.

top-history-list [Variable]

Package: toploop

■ holds the toploop history list.

top-history-limit [Variable]

Package: toploop

■ controls the number of entries to be retained in the history list. Its initial
value is 25.

top-history-count [Variable]

Package: toploop

■ holds the number of the current interaction with the toploop.

top-push-history [Function]

Arguments: item

Package: toploop

■ pushes the given history itemitem onto the history list, and trims the his-
tory list to *top-history-limit * items. A history item is a cons whose
car is an input form and whose cdr is a list of the values returned by evaluating
the input form.

top-replace-history [Function]

Arguments: item &optional (n -1)

Package: toploop

■ replaces thenth item in the history list byitem. n must be an integer. If
it is positive,item will replace that at thenth position in the history. If it is
negative,item will replace that at thenth position back in the history.item
should be a cons whose car is an input form and whose cdr is a list of values
returned by evaluating that form.

ALLEGRO CL for Windows: Programming Tools 2 - 35

Toploop

2.16.4 Finding source code

The toploop keeps track of the location of definitions evaluated, loaded, or in opened text
files. This is for use by theFind Definition menu command.

find-symbol-definition [Function]

Arguments: symbol

Package: toploop

■ attempts to find source code for symbol.

delete-definitions [Function]

Arguments: symbol

Package: toploop

■ removes all saved definition information forsymbol .

find-method-definition [Function]

Arguments: method

Package: toploop

■ attempts to find source code formethod .

find-method-definition-from-name [Function]

Arguments: generic-function-name specializer-class-names
&optional qualifiers

Package: toploop

■ Finds source code for a particular method from the name of the generic
function, a list of the names of the method's specializers, and optionally a qual-
ifier such as:before , :after or :around .
■ Example:

(top:find-method-definition-from-name
 'resize-window '(status-bar t) :after)

find-applicable-method-definitions [Function]

Arguments: generic-function-name arguments

Package: toploop

2 - 36 ALLEGRO CL for Windows: Programming Tools

■ Locates source code for all methods ofgeneric-function-name
that are applicable to a list ofarguments and that were loaded or evaluated
from source code. If exactly one applicable method is found, then the source is
displayed immediately in an editor window. If more than one definition is
available, then they are listed in the Find Definition dialog.
■ Example:

(find-applicable-method-definitions
 'redisplay-window (list top::*toploop-window* t))

defdefiner [Macro]

Arguments: symbol type
&optional (full-name-extractor ’second)

Package: toploop

■ markssymbol as a macro which creates a definition of the specified
type . full-name-extractor is a function that can be applied to the
defining form to extract a name for the definition. Whenever a top level call to
read reads such a definition, the file or window it was read from is attached
to the name. A laterfind-symbol-definition for the name will look in
the appropriate file or window. Standard symbols such asdefun , defmacro
etc. have already been set up to do this bydefdefiner .
■ For example:

(defmacro mydefun (&body body)

‘(progn

(print ’mydefun)

(defun ,@body)))

definesmydefun and(defdefiner mydefun myfun) treatsmyde-
fun as a definer of typemyfun , so that(mydefun ploppi (x) (+ 8
x)) is a definition ofploppi .
■ Source code examples:

(defdefiner defclass class)

(defdefiner defsetf setf

(lambda (form)

(list ’setf (second form))))

ALLEGRO CL for Windows: Programming Tools 2 - 37

Toploop

definer-p [Function]

Arguments: symbol

Package: toploop

■ returns definer type ofsymbol or nil .

2.16.5 Writing a toploop

The functiontoploop allows the user to install his or her own form of toploop.

toploop [Function]

Arguments: &key (:read-fn *top-read*)
(:eval-fn *top-eval*)
(:print-fn *top-print*)
(:prompt *top-prompt*)

Package: toploop

■ is called to establish a new toploop, which uses*standard-input*
and*standard-output* for input and output. Using the given functions
for reading, evaluating and printing input, aread-eval-print loop is then
invoked. The toploop prompt is constructed fromprompt .

2.16.6 The status bar

The status bar is a static text dialog that appears at the bottom of the screen when Allegro
CL for Windows is the current application. The following function and two variables are
associated with the status bar.

lisp-message [Function]

Arguments: format-string &rest format-args

Package: common-graphics

2 - 38 ALLEGRO CL for Windows: Programming Tools

■ This functions prints (usingformat) format-string to the status bar,
usingformat-args as required. It is not an error to call this function when
the status bar does not exist or is hidden, but nothing will be printed in that
case. (The associated functioncg:window-message prints to the status bar
in any window. See the description of that function in theCommon Graphics
portion of the Online Manual.)

lisp-message-print-length [Variable]

Package: common-graphics

■ This variable controls the length of lists printed in the status bar. Like
cl:*print-length* , its value can be a positive integer ornil . If the
value is a positive integer, no more than that many items will be printed in a
list, with the presence additional items indicated by suspension points (...). If
the value isnil , all items are printed.

lisp-message-print-level [Variable]

Package: common-graphics

■ This variable controls the depth of lists printed in the status bar. Like
cl:*print-level* , its value can be a positive integer ornil . If the value
is a positive integer, no more than that many levels will be printed in a list, with
the presence additional levels indicated by suspension points (...). If the value
is nil , all levels are printed. (If a list contains no sublists, it has depth 1. A list
containing at least one sublist of depthn and no sublist of depth greater thann
has depthn+1 . If the value of this variable is 1, all sublists will be indicated
with #.)

lisp-status-bar-font [Variable]

Package: toploop

■ The font used in the Lisp status bar.

lisp-status-bar-number-of-lines [Variable]

Package: toploop

■ The number of lines in the Lisp status bar.

ALLEGRO CL for Windows: Programming Tools 3 - 1

Text editor

Chapter 3 The Text Editor

Using the Text Editor, you can edit files containing Lisp programs from within the Lisp
application. The Text Editor is similar to the Windows Notepad Editor, but with additional
features to make the editing of Lisp programs very easy. The Text Editor also has a mode
of working which make it resemble Emacs.

3.1 Opening a file

Before a file can be edited, you need to open that file. You can work on a new file or one
that you’ve worked on and saved before. You can have several files open at one time.

Creating (opening) a new file
ChooseNew from the File menu. Lisp displays a new, empty window with a title such as
"Untitled.1". As you create successive new files, the number in the window title will be
incremented to give each file a unique name.

Opening an existing file
ChooseOpen... from the File menu. Lisp displays a Common Dialog for choosing a file-
name. The appearance of the dialog depends on the type of Windows you are running (the
Windows 95 dialog looks quite different from the Windows 3.1 dialog) but either one
allows you to specify a drive, directory, and filename.

After you have specified the file clickedOpen or OK (depending on the dialog) Lisp
displays a new window containing the file you have selected. The window title is set to the
file name.

Active files. When you have more than one file open, only one is active. The
active file window is typically on top of the other windows and its insertion point

3 - 2 ALLEGRO CL for Windows: Programming Tools

is typically flashing. To work with a different file, you must make it the active
file by clicking in its window or by choosing its title from the Windows menu.

File types. Files of any type can be opened but only text files can be meaning-
fully worked on.

32Kbyte Size limitation. Note that there is a 32Kbyte limit on the size of files
opened in a Text Editor window. (Larger files can be compiled and loaded. They
just cannot be edited with the Text Editor. 32Kbytes is typically between 500 and
1000 lines of code.)

3.2 Saving A file

When you are working with a file, you are really working with a temporary copy of it. To
make a permanent record of the file, you must save it to disk.

When the contents of a text-edit-window need to be saved, an asterisk (*) appears in the
title bar. To turn this feature off, see the description ofte:*flag-modified-text-
window-p* in section 3.18.18 below. Note that the asterisk is not part of the title string.

Saving for the first time
Files with names likeUntitled.3 have never been saved to disk. To save them, chooseSave
As... or Save from the File menu. Lisp displays a common dialog titled Save As and asks
for the file name. The appearance of the dialog depends on the type of Windows (the WIn-
dows 95 dialog looks different from the Windows 3.1 dialog) but both allow you to choose
a drive and directory and provides a widget to type in the filename. Click onOK or Save
(depending on the type of dialog) and the file will be saved.

Saving again
If you have already saved a file, you can save it again using the same name. ChooseSave
from the File menu. Lisp replaces the previously saved version of the file with the new ver-
sion.

ALLEGRO CL for Windows: Programming Tools 3 - 3

Text editor

Saving under a different name
If you make changes in a file and want to save the original version and the new version, you
must save the new version under a different name. ChooseSave As... from the File menu.
Type the new file name and clickSave. The window’s title is changed to the new file name.
You can also use this procedure to make an exact copy of an existing file.

Contents of files. Files handled by Lisp do not have to contain valid Lisp pro-
grams: in fact, they can contain any text you like.

Unsaved changes. Files in which changes have been made but not saved are
shown with a check mark next to their names in the Windows menu.

Discarding changes
You can cancel any changes in a file since you last saved it. ChooseRevert to Saved from
the File menu. Lisp asks you to confirm your decision:

Click Yes to discard the changes. ClickingNo cancels the Revert to Saved command
and leaves the file unchanged.

Warning . TheRevert to Saved command cannot be undone. Any changes you
have made to the file will be lost.

3.3 Closing a File

Closing a file removes it from the screen and gives you the chance to save any unsaved
changes to disk. ChooseClose from the File menu or from the Manage submenu of the
Window menu -- these twoClose menu items are the same). Alternatively, you can double
click in the file’s Control-menu box. If there are unsaved changes, Lisp asks if you want to
save the file:

3 - 4 ALLEGRO CL for Windows: Programming Tools

Click Save to save the changes before closing the file. ClickDiscard to close the file
without saving changes. ClickCancel to stop the file being closed.

Exiting without saving. If you chooseExit from the File menu to exit Lisp (or
attempt to exit Lisp in any other way, such as trying to close the final Toploop
window) while a file you have changed is open, Lisp asks you whether you want
to save it. So you don’t have to worry about closing all your files before exiting
Lisp.

3.4 Finding a definition

Allegro CL for Windows keeps a record of where objects (functions, variables, macros,
etc.) were defined. When a symbol is selected or the cursor is near a symbol, choosingFind
Definition from the Search menu will display the window where the definition of the object
named by the symbol appears (for example, the toploop window if the object was defined
there, a window open to a file if the definition was there, etc.) If no source for the definition
is known, that fact is printed to the status bar.

Sometimes there is more than one object named by the symbol. Suppose, for example,
that we have defined a functionfoo and a global variablefoo . We defined the function in
the toploop window as follows:

(defun foo (x) (+ 1 x))

We defined the variable in a window open to the filedm.lsp as follows:

(defvar foo 10)

ALLEGRO CL for Windows: Programming Tools 3 - 5

Text editor

Now, there are two definitions to choose from and Lisp brings up the following dialog
to allow you to specify the definition you want:

The All button
In some cases (but not in the illustrated case) only some effective method definition are dis-
played. Clicking onAll will display all such definitions. If not applicable (as in our exam-
ple), the button is masked.

The Edit button
Clicking on theEdit button finds the source code of the selected definition. If the definition
is in an open Text Edit window, that window is made active and scrolled to the definition.
(The Toploop window is a Text Edit window so the last statement applies. In the example
above, clicking onEdit would scroll the Toploop window to the definition offoo .)

If the definition came from a file loaded with load, clicking onEdit opens a Text Edit
window to the file (the source file if a compiled file was loaded).

Defining you own definition
As delivered, Allegro CL for Windows knows about the standard Lisp definition forms
(defun , defmacro , defvar , etc.) and will find all definitions made by such forms. You
may have extended Lisp with new macros that define objects. You can have Lisp find those
definitions as well with the macrodefdefiner described in section 2.16.4Finding
Source Code earlier in this manual.

3 - 6 ALLEGRO CL for Windows: Programming Tools

Other things to note
• If the definitions for one symbol are listed and you enter a new symbol in the

Symbol box, the window is typically updated automatically. However, it is
possible for the updating to be incomplete, particularly if the new symbol’s name
simple adds letter to the old symbol name (the symbolfoo1 compared to the
symbolfoo). Clicking theList box guarantees the updating is complete.

• If you delete the file where the definition is stored or modify it by removing the
definition and then click onEdit , Lisp will obviously not find the definition
(since it no longer exists). If will open or try to open the file, however.

Redefinition warnings
Because Lisp remembers where something was defined, it is able to warn you if you rede-
fine something in another location, since the redefinition may be unintentional. You will be
warned about redefinitions if the*warn-on-redefinitions* box is checked in the
Text Editor preferences form of the Preferences dialog:

(The box title names the associated variable, which is in theallegro package -- see
the description in the Online Manual for more information.) If redefinition warning is
enabled (it is in our case, since the box is checked), here is what happens. Suppose we have
defined the variablemyfun in the filedm1.lsp with the form:

(defvar myfun 10)

ALLEGRO CL for Windows: Programming Tools 3 - 7

Text editor

Suppose we now try to evaluate the form(defvar myfun 0) in the toploop window.
An error is signaled and the restarts window appears with the following restarts available:

Redefine it. Choosing this restart causes the new definition (in the new location)
to b replace the existing definition.

Return to Top Level (an ‘abort’ restart) . Cancels the loading of the file con-
taining the redefinition (if it comes from a file) or just cancels the redefinition (if
it was typed directly to Lisp).

The following restart is only available if the redefinition appears in a file being loaded:

Continue loading from #<file stream ...>. The form causing the redefinition is
skipped and the remaining forms are loaded.

The final restart is only available if the redefinition appears in a source (not compiled) file
being loaded:

Enter debugger and edit <file>. This brings up a debugger window (not of
much interest since the cause of the error is presumably clear) and opens the file
for editing. You must abort out of the debugger before you can save any changes
to the file.

Redefining a system or Lisp function or object
If you try to redefine a system standard Lisp object (like the functioncar), a different error
will be signaled. This behavior is controlled by the variables*warn-on-protected-
class-definition* , *warn-on-protected-function-redefinition* ,
and *warn-on-protected-generic-function-redefinition* , all in the
allegro package and all defined in the Online Manual. You could continue from the error
and effect the redefinition but westrongly advise you not to redefine system or standard
Lisp functions. You may break the system in weird and unrecoverable ways. These vari-
ables are set on the Compiler preferences form but we recommend that they be kept true,
which is their initial values.

3.5 Inserting Text

To insert text in a file, you type it at the insertion point, which appears as a blinking vertical
bar. As you type a closing parenthesis, Lisp flashes the corresponding opening parenthesis
to allow you to check the bracketing of your code.

3 - 8 ALLEGRO CL for Windows: Programming Tools

Pressing Enter moves the insertion point to a new line and indents it appropriately.
Pressing Tab when the insertion point is at the beginning of a line reindents the current line
in relation to the line above it.

Overriding indentation . You can use the arrow keys to override indentation.
Press← as often as necessary to move toward the beginning of the line.

Moving the insertion point
You can move the insertion point by moving the cursor to where you want to insert the text.
(the pointer appears as an I-beam in a Text Editor window). Click the location. Lisp moves
the insertion point to the new location. If the text you want to change isn’t visible in the file
window, you can move around in the file using the scroll bars. You can also drag the win-
dow around the screen, resize it and zoom it.

Shortcuts. You can use the arrows keys to move the insertion point in a file.

Selecting text
You must select text before you can perform a command on it, such as copying or moving.
Selected text can be any size from a single character up to the entire file. When you select
text, Lisp highlights it.

You can select text by dragging through it. You can also select text by clicking a location
and then Shift-clicking in a different location. Lisp selects all the text between the two loca-
tions.

Selecting a word. You can select a word by double-clicking anywhere in it. Lisp
defines a word as a complete Common Lisp symbol or number.

Selecting a Lisp form. You can double-click on an opening or closing parenthe-
sis or square bracket to select the whole of the expression up to the matching
parenthesis or bracket. This is useful to check that a program is bracketed prop-
erly.

Selecting a string. You can double-click on a string quote (") to select all the
text forward to the next string quote.

Selecting a comment. You can double-click on a semicolon to select the rest of
the line including the semicolon. You can double-click on a vertical bar (|) to
select all the text forward to the next vertical bar.

ALLEGRO CL for Windows: Programming Tools 3 - 9

Text editor

Selecting the entire file. To select the entire file, chooseSelect All from the Edit
menu.

3.6 Deleting Text

To delete one character at a time, click the location to the right of the character you want to
delete and press the Backspace key. Continue to press Backspace to delete more characters.
Or position the cursor to the left of the characters you want to delete and press the Delete
key (which deletes forward).

To delete a block of text, select the text you want to delete and chooseDelete from the
Edit menu. Alternatively, you can press the Delete key or the Backspace key (either deletes
all selected text).

To replace a block of text, select it and start typing. The newly typed text replaces the
old text.

Transposed characters. One of the most common typing mistakes is to trans-
pose characters: for example, typingdefnu instead ofdefun. In the Host Text Edi-
tor mode, you can type Ctrl-‘ to switch the positions of the two characters to the
left of the insertion point.

Shortcuts. In the Host Text Editor mode, you can type Ctrl-Delete to delete the
word after the cursor, Ctrl-Backspace to delete the word before the cursor, and
Alt-Backspace to delete the last form you typed.

3.7 Moving and Copying Text

You can move text by cutting it and then pasting it in a new location. You can copy text to
used the same text in different places without retyping it. You can move or copy text within
the same file, or to any other file.

Select the text you want to move or copy and chooseCut or Copy from the Edit menu.
Lisp puts the selected text into the Clipboard. If youCut, the selected text is deleted from
the file. Click the location where you want the text to appear and choosePaste from the
Edit menu. Lisp copies the text from the Clipboard and inserts it at the new location.

3 - 10 ALLEGRO CL for Windows: Programming Tools

Pasting onto a selection. If you select some text before choosing thePaste com-
mand, that text will be replaced with the text from the Clipboard.

Lisp uses a special Clipboard. When you copy or cut text into the Lisp Clip-
board, it does not replace what was already there. Instead, the text is pushed onto
the Lisp Clipboard (see section 2.13). You can chooseClipboard from the Win-
dows menu to see the contents of the Lisp Clipboard.

Moving and copying to the Structure Editor. You can move or copy things
between Text Editor windows and Structure Editor windows. When moving text
to the Structure Editor, you may need to use theConvert button on the Clipboard
window to convert your text to Lisp structure before pasting it in.

3.8 Finding Text

You can easily locate any text in a file. Click the location in the file where you want the
search to begin. ChooseFind... from the Search menu. Lisp asks for the text to search for:

Type the characters you want to find in the space provided. As displayed, the search will
be forward. ClickSearch Backwards if you want to search backward from the insertion
point (anx appears in the box to the left ofSearch Backwards). Click again to remove the
x and search forward. Similarly, clickMatch Exactly if you want the search to be case sen-
sitive. Then clickFind. Lisp selects the next occurrence of the characters you have typed.
If the characters cannot be found, the system beeps.

Case sensitive searching. When theMatch Exactly box is not checked, Lisp
counts lowercase and uppercase characters as being the same. In addition, it
counts’ as being the same as" , (the same as [, and) the same as].

Special characters. To search for a Tab character in a file, type \T in the Find
box. To search for an end of line, type \N (“Newline”). To search for the Back-
slash character itself, type \\.

ALLEGRO CL for Windows: Programming Tools 3 - 11

Text editor

Repeating a Find command
To search from another occurrence of the characters you typed into the Find What box,
chooseFind Again from the Search menu. The search will continue in the same direction
as before.

Searching using the Clipboard
To search a file for the text in the top item of the Lisp Clipboard, chooseFind Clipboard
from the Search menu. The search direction and case sensitivity are taken from the values
used in the most recentFind... command. You will often find it easier to select some text
and then use theCopy andFind Clipboard commands than to use theFind... command.

3.9 Replacing Text

Lisp lets you replace any text in a file with some other text. Click the location in the file
where you want the search to begin. ChooseReplace... from the Search menu. Lisp dis-
plays a Replace dialog box which asks for the text to search for, and the text to replace it
with:

Type the characters you want to find in theFind what? box. Type the new characters in
the Replace with what? box. Click Search Backward if you want to search backward
from the insertion point. ClickMatch Exactly if you want the search to be case sensitive.
Then clickReplace. Lisp replaces the next occurrence of theFind what? characters with
theReplace with what? characters and selects the new characters. If theFind what? char-
acters cannot be found, the system beeps.

3 - 12 ALLEGRO CL for Windows: Programming Tools

Repeating a Replace command
To repeat the lastReplace command, chooseReplace Again from the Search menu. The
search for a second occurrence of the Find characters continues in the same direction as
before.

Replacing all occurrences of some text
If you click Replace All on the Replace dialog box, all occurrences of theFind What?
characters are replaced between the insertion point and the beginning or end of the file,
depending on the search direction.

Replacing text selectively
You can replace some, but not all, occurrences of theFind characters in a file. Choose
Replace... from the Search menu and proceed as before but click theFind button instead
of theReplace button. Lisp selects the next occurrence of theFind characters. Now choose
Replace Again from the Search menu to replace that occurrence, or chooseFind Again to
find the next occurrence. Continue usingFind Again andReplace Again until you have
replaced all the occurrences of the Find characters that you wish to change.

3.10 Marking Text

Lisp lets you mark a location in a file so that you can easily return to that place later. You
can also select all the text between the marked location and another location in the file.

Marking a location
Click the location in the file where you want to put the mark and chooseSet Mark from
the Marks submenu of the Search menu. Lisp remembers the location which you have
marked. You can only have one mark in each file. If you mark a different location, the pre-
vious mark is lost.

Moving to the mark
You can move the insertion point to the location you have marked by choosingSwap with
Mark from the Marks submenu of the Search menu. Lisp swaps the locations of the mark
and the insertion point.

ALLEGRO CL for Windows: Programming Tools 3 - 13

Text editor

Selecting text using the mark
ChooseSelect to Mark from the Search menu. Lisp selects all the text between the mark
and the insertion point. The mark is unaffected. ChoosingDisplay Selection from the same
menu moves scrolls the window so that the mark is visible.

Finding out where the mark is
You can quickly see where the mark is set by using theSwap with Mark command twice.
The first time you use it, Lisp moves the insertion point to the mark. The second time, Lisp
moves the insertion point back to its original position.

3.11 Printing

You can produce a printed copy of any Lisp file or part of a file. You can specify page and
printing settings so that the printed copy appears in the format you want.

Choosing a printer
ChoosingChoose Printer... from the Print submenu of the File menu displays a dialog, like
that shown below, containing the list of installed Windows printers. If you select a printer
from this dialog and click OK, then Allegro CL modifies thewin.ini file to make the chosen
printer the current default printer for all Windows applications (just as if you selected it
using the Windows Control Panel). Allegro CL will now use that printer as well.

3 - 14 ALLEGRO CL for Windows: Programming Tools

Setting up the page format
You can specify options appropriate to the printer by choosingPrinter Setup... from the
File menu. Lisp uses the default printer specified by bringing up the Control Panel applica-
tion and selecting Printers. If you wish to use an alternate printer, change the default before
asking Lisp to print. Once things are set up, you can print.

Printing a file
To print a copy of a file open to a Text Edit window, choosePrint... from the Print submenu
of the File menu while the window is active. Depending on the printer, Lisp may display
another dialog box asking for more information or just start printing (as it does with the
printer shown in the illustration).

Printing part of a file . To print part of a file, select the text you want to print and
then choosePrint... from the File menu.

Finding out if there is selected text in a file. You can find out whether there is
a selection in a file by choosingDisplay Selection from the Search menu. Lisp
scrolls the file so that the insertion point (or the start of the selection) is visible.

3.12 Evaluating Lisp Forms

You can evaluate Lisp forms in any file. The values returned by the evaluation are printed
in the Toploop window and recorded on the history list, exactly as if you had typed the text
into the Toploop window yourself.

Evaluating single forms
To evaluate a single form in a file, click the location in the file just before the form to be
evaluated and press Alt-Enter. Lisp reads from the file starting at the insertion point and
evaluates what it has read. The insertion point is left just after the form that has been read.

Evaluating many forms
To evaluate more than one form at a time, select the forms you want to evaluate and choose
Selection from the submenu displayed by choosingEvaluate from the Tools menu. Lisp
reads the forms in the selection one at a time and evaluates them.

ALLEGRO CL for Windows: Programming Tools 3 - 15

Text editor

Repeatedly evaluating one form
After pressing Enter, you can move the insertion point back to the start of the form just eval-
uated using Alt← in the Host text editor mode.

Worksheets. You can create a file containing forms that you need to evaluate fre-
quently and keep it open on the screen. When you need to evaluate one of the
forms in it, you can easily find the form in the file, click before it and press Alt-
Enter.

Stepping through a file. You can step through a file, evaluating one form at a
time, by clicking at the start of the file and repeatedly pressing Enter.

Evaluating an entire file. To evaluate all the forms in a file at once, choose
Select All from the Edit menu, thenSelection from the submenu displayed by
choosingEvaluate from the Tools menu. Alternatively, you can save the file to
disk and then use theLoad... command from the File menu.

Selections that contain incomplete forms
The Evaluate:Selection command works by repeatedly reading forms until it
has read beyond the end of the selection. If your selection does not end at the end
of a form, thenEvaluate:Selection may read past the end of the selection (it will
try closing any open parentheses). If it reads off the end of the file, Lisp signals
an error, perhaps because the form closed off with extra parentheses is erroneous,
perhaps for reading off the end of the stream.

3.13 Reformatting a File

When you have edited and re-edited a file containing Lisp programs, the layout can often
become untidy and the indentation misleading. Lisp allows you to reformat part (or all) of
a file to check parenthesis errors and improve its presentation.

Setting up
Lisp gives you two ways of reformatting a file. You can tell Lisp to reformat by reading
from the file and then pretty print back what it has read using the Lisp Printer. Alternatively,
you can tell Lisp to reformat by re-indenting each line of the file with respect to the brack-
eting of the previous line. To set your reformatting preference, bring up the Preferences dia-
log (by choosingMain Preferences from the Preferences menu) and choose the Text Editor

3 - 16 ALLEGRO CL for Windows: Programming Tools

tab so the Text Editor preferences form is displayed. The*pretty-printer* field has
a Combo box next to it, with the choices Reindent and Pretty Print. If the value shown is
not what you want, change it and click on theApply button.

Reformatting
Select the form(s) you want to reformat and choosePretty Print from the Tools menu. Lisp
reformats the selection. To reformat the entire file, chooseSelect All from the Edit menu
before using thePretty Print command.

Reformatting comments. When reformatting using the pretty printer, Lisp
attempts to justify comments spanning more than one line. Lisp justifies com-
ments into left-justified paragraphs. A paragraph is considered to end when a
blank comment line is found, or when a comment line beginning with two or
more spaces is found. You can turn justification of comments off by unchecking
the *justify-comments* box in the Text Editor from on the Preferences
dialog (displayed by choosingMain Preferences from the Preferences menu
and tabbing to Text Editor).

Changing the case of reformatted text. The Lisp printer prints symbols in
uppercase or lowercase according to the value of*print-case* . You can
change the case of a reformatted selection by choosingChange Case from the
Edit menu. Lisp displays the submenu with choicesUPCASE, downcase, and
Capitalize. Click on the type of casing you want and Lisp changes the case of
all the text in the selection

Comments
You can easily comment out sections of a program using Lisp. You can then uncomment
them back in again later.

Commenting out part of a file
Select the form(s) you want to comment out and chooseComment In/Out from the Edit
menu. Lisp inserts three semicolons before each line in the selection. To uncomment the
selection simply use theComment In/Out command again.

Determining whether the selection will be commented in or out. Lisp only
looks at the first line of the selection, to determine whether to add semicolons or
remove them.

ALLEGRO CL for Windows: Programming Tools 3 - 17

Text editor

Single semicolon comments. In the normal text editor mode, pressing Ctrl-; tabs
towards the right of the file and inserts a single semicolon. You can change the
amount of whitespace tabbed by modifying the*comment-indent* field in
the Text Editor from on the Preferences dialog (displayed by choosingMain
Preferences from the Preferences menu and tabbing to Text Editor. This also
changes the tabulation used by the Lisp printer.

3.14 Associating Packages With Text Editor Windows

In nearly all cases, the forms saved in a file will need to be read into a particular package.
To make sure that the forms are read into the right package when the file is loaded, you
should normally put a call toin-package at the start of the file.

When you open a Text Edit window to a file with anin-package form, the current
package is set to that package while the Text Edit window is active. Each Text edit window
has its own associated package so the current package changes as you move among Text
Edit windows.

Checking the package of a file
You can quickly check the packages associated with a file by looking at the Packages menu
while that file is active. The package into which forms in the file will be read is shown with
a check mark.

3.15 Setting The Text Editor Mode

You can alter the Text Editor so that it behaves like an Emacs or Brief editor (rather than a
standard Windows Operating System editor -- called Host in the menu -- which is the
default). You may find this useful if you have used one of these other editors before.

Altering the mode
To alter the Text Editor mode, change the value in the*editor-mode* box in the Text
Editor from on the Preferences dialog (displayed by choosingMain Preferences from the
Preferences menu and tabbing to Text Editor. Choose the desired mode and click onApply.
Lisp now sets the Text Editor to work in the new mode in all the open files.

3 - 18 ALLEGRO CL for Windows: Programming Tools

Keybindings in editor modes
Appendix A has a table of keybindings in effect in the various editor modes.

Using editor commands from any mode
Changing the editor mode just affects the editor commands that are available from the key-
board.

Menu bar menu shortcuts. In Emacs mode, menu bar menu shortcuts using the
Alt key and the underlined letter in the menu are not available. You can still
choose commands from the menu in the normal way.

The Toploop window. Changing the Text Editor mode also affects the text edit-
ing commands available in the Toploop window, since Toploop window is a Text
Editor window.

Defining editor commands. You can define your own editor commands.You
can also bind your commands to keys. See section 3.17 and its subsections below
for more information.

Shortcuts
In the Host Text editor mode, the following keyboard shortcuts work (some but not all work
in other modes):

← moves the insertion point back one character.

→ moves the insertion point forward one character.

↑ moves the insertion point up one line.

↓ moves the insertion point down one line.

Ctrl ← moves the insertion point back to the start of the enclosing list.

Ctrl → moves the insertion point forward to the end of the enclosing list.

Ctrl ↑ moves the insertion point back to the start of a definition.

Ctrl ↓ moves the insertion point to the start of the next definition.

Alt ← moves the insertion point back one form.

Alt → moves the insertion point forward one form.

Alt ↑ moves the insertion point to the beginning of the current line.

ALLEGRO CL for Windows: Programming Tools 3 - 19

Text editor

Alt ↓ moves the insertion point to the end of the current line.

Delete deletes the character to the right of the insertion point (i.e. deletes for-
ward).

Backspace deletes the character to the left of the insertion point (i.e. deletes
backward).

Alt-Delete deletes all the characters back from the insertion point to the begin-
ning of the line.

Ctrl-Delete deletes the form to the left of the insertion point.

Enter inserts a #\NEWLINE character and indents the new line according to the
bracketing of the previous line.

Tab at the beginning of a line, reindents the current line according to the brack-
eting of the previous line. If the insertion point is not at the beginning of a line,
pressing Tab inserts three spaces.

Ctrl-; tabs over and inserts a single semicolon.

Ctrl-’ transposes the two characters to the left of the insertion point.

Ctrl-Space selects all the text between the insertion point and the mark.

3 - 20 ALLEGRO CL for Windows: Programming Tools

3.16 Text editor internals

This material was chapter 3 of theInside Programming Tools manual in release 2.0.

The Allegro CL for Windows Text Editor is an Emacs-like programmable Text Editor.
Any stream opened with adevice argument oftext-edit-pane supports all the Text
Editor functions described in this chapter. In addition,lisp-edit-panes (subclasses
of text-edit-pane andcomtab-mixin) support parenthesis flashing and command
tables (comtabs).text-edit-pane s are based on the Edit controls of version 3.x of the
Windows operating system and as such are limited to 32K characters.

Note that the pane of a window is a child of a frame window and it is common to have
a handle on the frame rather than the pane. If the window has no other children, the pane is
the single element of the list returned by applyingwindows to the window. Most functions
in this chapter operate on panes and will fail if passed a frame window rather than a pane
as an argument.

A special event function associated with Lisp Edit windows turns events such as mouse
clicks and key presses into calls to Lisp functions by looking up the events in command
tables or comtabs. The functions used to set up the comtabs themselves are described in
Chapter 9 of this manual. This chapter describes the functions which you will need if you
want to extend the standard Text Editor or write text processing functions.

Functions are provided to manipulate Lisp programs as characters, lines, forms, lists,
complete definitions and selected sections of text. The Text Editor only has access to the
character representation of a program, unlike the Structure Editor which manipulates Lisp
programs as data structures.

3.16.1 Operations on characters

forward-character [Function]

Arguments: pane

Package: text-edit

■ increments the file position by one and returns the character stepped over.
forward-character returnsnil if the file position is at the end ofpane .

ALLEGRO CL for Windows: Programming Tools 3 - 21

Text editor

backward-character [Function]

Arguments: pane

Package: text-edit

■ decrements the file position by one and returns the character stepped over.
backward-character returnsnil if the file position is at the start of
pane .

delete-next-character [Function]

Arguments: pane

Package: text-edit

■ deletes the character to the right of the file position. Does nothing if the
current file position is at the end ofpane .

delete-previous-character [Function]

Arguments: pane

Package: text-edit

■ deletes the character to the left of the file position and decrements the file
position by one. Does nothing if the file position is at the start ofpane .

insert-character [Function]

Arguments: pane character

Package: text-edit

■ insertscharacter at the current file position and increments the position
by one.

transpose-characters [Function]

Arguments: pane

Package: text-edit

■ transposes the two characters to the left of the file position and leaves the
file position unchanged.

3 - 22 ALLEGRO CL for Windows: Programming Tools

3.16.2 Operations on words

The functions described in this section operate on whole words. A word is a sequence of
constituent characters delimited by characters with syntax attributes terminating-macro,
whitespace, super-bracket or illegal in the current readtable (which is the value of
readtable).

The file position is inside a word if the characters to its left and right have the character
syntax constituent.

If the file position is inside a word, the next or current word is that word. Otherwise it
is the next sequence of constituent characters found in the file.

Similarly, the previous word is either the word containing the current file position or the
last sequence of constituent characters before the file position.

forward-word [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the end of the next word.forward-word does
nothing if the file position is at the end ofpane .

backward-word [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the start of the previous word.backward-
word does nothing if the file position is at the start ofpane .

kill-word [Function]

Arguments: pane

Package: text-edit

■ cuts the next word out ofpane and pushes it onto the Lisp Clipboard.

backward-kill-word [Function]

Arguments: pane

Package: text-edit

ALLEGRO CL for Windows: Programming Tools 3 - 23

Text editor

■ cuts the previous word out ofpane and pushes it onto the Lisp Clipboard.

delete-word [Function]

Arguments: pane

Package: text-edit

■ deletes the next word frompane without copying it to the Lisp Clipboard.

backward-delete-word [Function]

Arguments: pane

Package: text-edit

■ deletes the previous word frompane without copying it to the Lisp Clip-
board.

upcase-word [Function]

Arguments: pane

Package: text-edit

■ converts all alphabetic characters in the current word to upper case.

downcase-word [Function]

Arguments: pane

Package: text-edit

■ converts all alphabetic characters in the current word to lower case.

capitalize-word [Function]

Arguments: pane

Package: text-edit

■ Converts the first of each sequence of alphanumeric characters in the cur-
rent word to upper case. The table below shows some examples of the effect of
capitalize-word.

Before After

select Select

SELECT Select

3 - 24 ALLEGRO CL for Windows: Programming Tools

select-current-word [Function]

Arguments: pane

Package: text-edit

■ selects the current word (see Section 3.9,Operations on Regions).

current-symbol [Function]

Arguments: pane

Package: text-edit

■ selects the current word and returns a symbol whose print name is that
word.

3.16.3 Operations on lines

beginning-of-line [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the start of the current line.

end-of-line [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the end of the current line.

kill-line [Function]

Arguments: pane

SELECT-CURRENT-WORD Select-Current-Word

select2words Select2words

one+one One+One

Before After

ALLEGRO CL for Windows: Programming Tools 3 - 25

Text editor

Package: text-edit

■ cuts text from the current position to the end of the line, leaving the #\New-
line character, and pushes the text onto the Lisp Clipboard. If the file position
is at the end of a line, a newline character #\Newline is cut instead.

backward-kill-line [Function]

Arguments: pane

Package: text-edit

■ cuts text from the current position to the start of the line, leaving the
#\Newline character, and pushes the text onto the Lisp Clipboard. If the file
position is at the start of a line, a newline character #\Newline is cut instead.

delete-line [Function]

Arguments: pane

Package: text-edit

■ deletes text (excluding #\Newline) from the current position to the end of
the line. If the file position is at the end of a line, the newline character #\New-
line is deleted instead.

backward-delete-line [Function]

Arguments: pane

Package: text-edit

■ deletes text (excluding #\Newline) from the current position to the start of
the line. If the file position is at the start of a line, the newline character #\New-
line is deleted instead.

next-line [Function]

Arguments: pane

Package: text-edit

■ moves the current file position down one line. The insertion point is kept
in the same column if possible. The file position is moved to the end of the des-
tination line if the line is too short to allow indentation to be preserved.

previous-line [Function]

Arguments: pane

Package: text-edit

3 - 26 ALLEGRO CL for Windows: Programming Tools

■ moves the current file position up one line. The insertion point is kept in
the same column if possible. The file position is moved to the end of the desti-
nation line if the line is too short to allow indentation to be preserved.

newline [Function]

Arguments: pane

Package: text-edit

■ inserts a newline character #\Newline. This breaks the current line at the
cursor position and leaves the file position at the start of the new line after the
#\Newline character.

open-line [Function]

Arguments: pane

Package: text-edit

■ inserts a newline character and then leaves the file position just before the
line break.

3.16.4 Operations on Lisp forms

The definitions of “next” and “previous” Lisp forms are similar to those used for words.
The Text Editor ignores any comments when performing operations on forms and treats
them as whitespace.

Thecurrent or next form is identified by the context around the current file position.

• If the file position is within a symbol, that symbol is the current form.

• Otherwise, the current form is the next form which would be read by the reader.
There is therefore no current form if the file position is immediately before a
closing parenthesis.

Theprevious form is found as follows:

• If the file position is within or just after a symbol, the previous form is that
symbol.

• Otherwise it is the form which would be found by reading backwards from the
file position. In the example below,

#’(lambda (x y) (cons x y))

ALLEGRO CL for Windows: Programming Tools 3 - 27

Text editor

with the file position after the final closing parenthesis, the previous form is the
whole expressionexcluding the characters #’.

• If the file position is in the middle of a symbol,delete-sexp etc. delete
characters from the symbol to the right or left of the file position, as appropriate.

forward-sexp [Function]

Arguments: pane

Package: text-edit

■ places the file position after the end of the current form. Beeps if there is
no current form.

backward-sexp [Function]

Arguments: pane

Package: text-edit

■ places the file position before the start of the previous form. Beeps if there
is no previous form.

kill-sexp [Function]

Arguments: pane

Package: text-edit

■ cuts text between the current file position and the end of the current form
and pushes it onto the Lisp Clipboard.

backward-kill-sexp [Function]

Arguments: pane

Package: text-edit

■ cuts text between the current file position and the start of the previous form
and pushes it onto the Lisp Clipboard.

delete-sexp [Function]

Arguments: pane

Package: text-edit

■ deletes text between the current file position and the end of the current
form.

3 - 28 ALLEGRO CL for Windows: Programming Tools

backward-delete-sexp [Function]

Arguments: pane

Package: text-edit

■ deletes text between the current file position and the start of the previous
form.

3.16.5 Operations on lists

The Text Editor provides extensive facilities for manipulating Lisp programs as lists. The
Editor makes some assumptions about the structure of the program text which enable it to
identify enclosing lists when moving through a file

If the first character in a line is an open parenthesis, then this is treated as the beginning
of a form.

insert-empty-list [Function]

Arguments: pane

Package: text-edit

■ inserts the empty list () at the file position and places the insertion point
between the parentheses.

forward-list [Function]

Arguments: pane

Package: text-edit

■ moves to the end of the next list at the current depth of nesting. If there are
no more lists at the current depth,forward-list beeps and leaves the file
position unchanged.

backward-list [Function]

Arguments: pane

Package: text-edit

■ moves to the start of the previous list at the current depth of nesting. If
there are no more lists at the current depth,backward-list beeps and
leaves the file position unchanged.

ALLEGRO CL for Windows: Programming Tools 3 - 29

Text editor

forward-up-list [Function]

Arguments: pane

Package: text-edit

■ places the file position immediately after the closing parenthesis of the
enclosing list. If there is no enclosing list,forward-up-list beeps and
leaves the file position unchanged.

backward-up-list [Function]

Arguments: pane

Package: text-edit

■ places the file position immediately before the opening parenthesis of the
enclosing list. If there is no enclosing list,backward-up-list beeps and
leaves the file position unchanged.

down-list [Function]

Arguments: pane

Package: text-edit

■ moves the file position to immediately after the opening parenthesis of the
next list at the current level. If there are no more lists at the current level,
down-list beeps and leaves the file position unchanged.

3.16.6 Operations on definitions

The Text Editor considers adefinition to be a list whose opening parenthesis is in the left-
most column.

beginning-of-definition [Function]

Arguments: pane

Package: text-edit

■ moves the file position backwards to the start of the preceding definition.
If there is no preceding definition,beginning-of-definition leaves
the file position at the start ofpane .

3 - 30 ALLEGRO CL for Windows: Programming Tools

beginning-of-next-definition [Function]

Arguments: pane

Package: text-edit

■ moves the file position forwards to the start of the next definition. If there
are no more definitions in the file,beginning-of-definition leaves
the file position at the end ofpane .

end-of-definition [Function]

Arguments: pane

Package: text-edit

■ moves to the end of the current definition. If the file position is already at
the end of a definition,end-of-definition moves to the end of the next
definition in the file if there is one. If there are no more definitions,end-of-
definition beeps and leaves the file position at the end ofpane .

eval-definition [Function]

Arguments: pane

Package: text-edit

■ moves the file position backwards to the start of the preceding definition
then reads it using the functionread and evaluates it using*top-eval* .
Any results of the evaluation are printed to the Toplooppane .

3.16.7 Operations on comments

find-start-of-comment [Function]

Arguments: pane

Package: text-edit

■ places the file position immediately before any semicolon introducing a
comment on the current line. If there is no comment, the file position is set to
the end of the current line.

kill-comment [Function]

Arguments: pane

Package: text-edit

ALLEGRO CL for Windows: Programming Tools 3 - 31

Text editor

■ cuts comment text from the current line, including all preceding semico-
lons, and pushes it onto the Lisp Clipboard. If there is no comment on the line,
kill-comment does nothing.

indent-for-comment [Function]

Arguments: pane

Package: text-edit

■ moves the insertion point to the column given by the value of*com-
ment-indent* and inserts a single semicolon and a space. If the tab posi-
tion is already beyond*comment-indent* , a new line is inserted and the
comment is placed on the new line.

3.16.8 Indentation

The following indentation functions estimate the required whitespace based on an analysis
of the current lisp definition. They work with both fixed and variable width fonts.

reindent-single-line [Function]

Arguments: pane

Package: text-edit

■ indents the current line relative to the current list by adding an appropriate
amount of whitespace. The file position ofpane should be at the start of a line
whenreindent-single-line is called. After the call it is moved to the
end of any inserted whitespace. This function does nothing if the previous line
is all whitespace or there are net closing super-brackets on it.

reindent-sexp [Function]

Arguments: pane

Package: text-edit

■ reindents all lines starting within the form immediately following the cur-
rent file position.

newline-and-indent [Function]

Arguments: pane

Package: text-edit

3 - 32 ALLEGRO CL for Windows: Programming Tools

■ inserts a new line at the current file position and callsreindent-
single-line on the new line.

comment-newline-and-indent [Function]

Arguments: pane

Package: text-edit

■ inserts a new line at the current file position and callsreindent-
single-line . In addition, if the line starts with a comment, any semicolons
and whitespace after them are duplicated on the new line.

delete-horizontal-space [Function]

Arguments: pane

Package: text-edit

■ deletes continuous whitespace to the left and right of the current position.
The operation stops at the first non- whitespace or #\Newline character in
either direction.

delete-indentation [Function]

Arguments: pane

Package: text-edit

■ removes any indentation on the current line by deleting any whitespace
characters at its start. The file position is left at the start of the line.

3.16.9 Operations on regions

Every Text Edit pane has a currently selected region which is displayed inverted or other-
wise highlighted. In addition to the functions below, the generic functionscopy-selection,
paste-selection, anddelete-selection may be used to manipulate selected regions (see the
Edit menu Items entry in the Common Graphics section of the Online Manual).

set-region [Function]

Arguments: pane start end

Package: text-edit

ALLEGRO CL for Windows: Programming Tools 3 - 33

Text editor

■ selects the region between the file positionsstart andend . The function
has no effect ifend is beforestart .

select-all [Function]

Arguments: pane

Package: text-edit

■ equivalent toset-region on the entire contents ofpane .

get-region [Function]

Arguments: pane

Package: text-edit

■ returns two integer values giving the start and the end of the selected
region. Both these values are equal to the current file position if no region is
selected.

read-region [Function]

Arguments: pane

Package: text-edit

■ returns the characters between the start and end of the selected region as a
Lisp string.

pretty-print-region [Function]

Arguments: pane

Package: text-edit

■ reads all objects which start in the selected region and pretty-prints them
back topane , overwriting the original text.

reindent-region [Function]

Arguments: pane

Package: text-edit

■ reindents all lines which start in the selected region. Sets the file position
to the end of the selection.

delete-to-kill-buffer [Function]

Arguments: pane

3 - 34 ALLEGRO CL for Windows: Programming Tools

Package: text-edit

■ cuts the selected text frompane and pushes it onto the Lisp Clipboard.

copy-to-kill-buffer [Function]

Arguments: pane

Package: text-edit

■ copies the selected text frompane and pushes it onto the Lisp Clipboard.

yank-from-kill-buffer [Function]

Arguments: pane

Package: text-edit

■ inserts text from the top of the Lisp Clipboard at the current file position
and leaves the file position at the end of the selection.

3.16.10 Operations on panes

scroll-one-line-up [Function]

Arguments: pane

Package: text-edit

■ scrollspane one line upwards. Does nothing ifpane is at end of file.

scroll-one-line-down [Function]

Arguments: pane

Package: text-edit

■ scrollspane one line downwards. Does nothing ifpane is at start of file.

number-of-lines-in-window [Function]

Arguments: pane

Package: text-edit

■ returns the number of lines of text in the visible portion ofpane .

next-page [Function]

Arguments: pane

ALLEGRO CL for Windows: Programming Tools 3 - 35

Text editor

Package: text-edit

■ scrolls pane upwards by one pane full of text minus*number-of-
lines-kept-in-page-scroll*.

previous-page [Function]

Arguments: pane

Package: text-edit

■ scrollspane downwards by one pane full of text minus*number-of-
lines-kept-in-page-scroll*.

3.16.11 Operations on files

beginning-of-file [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the start ofpane .

end-of-file [Function]

Arguments: pane

Package: text-edit

■ moves the file position to the end ofpane .

3.16.12 Mark operations

Marks are used to remember file positions for later reference. A marked place moves with
the text around it to reflect any deletions or insertions made between the file start and the
mark. If the text around a mark is deleted, the mark moves to the place previously occupied
by the start of the deleted region.

make-mark [Function]

Arguments: pane position

Package: text-edit

3 - 36 ALLEGRO CL for Windows: Programming Tools

■ creates a mark inpane at the specified fileposition .

mark-p [Function]

Arguments: object

Package: text-edit

■ non-nil if object is a mark.

mark-position [Function]

Arguments: mark

Package: text-edit

■ returns the current location ofmark .

delete-mark [Function]

Arguments: pane mark

Package: text-edit

■ removes the link between themark and the text in thepane allowing
more rapid updating ofpane .

Every pane automatically has a unique principal mark. The following functions act spe-
cifically on this mark.

:mark [Generic Function]

Arguments: pane

Package: keyword

■ sets the principal mark inpane to the current file position.

get-mark [Function]

Arguments: pane

Package: text-edit

■ returns the position ofpane ’s principal mark. If it has not yet been set,
get-mark returns the current file position.

:select-to-mark [Generic Function]

Arguments: pane

Package: keyword

ALLEGRO CL for Windows: Programming Tools 3 - 37

Text editor

■ selects the region between the current file position and the principal mark.

:exchange-to-mark [Generic Function]

Arguments: pane

Package: keyword

■ moves the current file position to the principal mark. The mark is then
moved to the file position just abandoned. Nothing is done if the principal mark
has not yet been set.

3.16.13 Textual search and replace

string-search [Function]

Arguments: pane target &optional backward case-sensitive

Package: text-edit

■ searches for the string target inpane . The search proceeds forward from
the current file position unlessbackward is non-nil . Upper and lower case
characters are considered identical unlesscase-sensitive is non-nil .
Returnst if the string was found.

string-replace [Function]

Arguments: pane target replacement-text
&optional backward case-sensitive globally

Package: text-edit

■ searches for the string target inpane and replaces it withreplace-
ment-text . If globally is non-nil all occurrences oftarget are
replaced. The search proceeds forward from the current file position unless
backward is non-nil . Upper and lower case characters are considered iden-
tical unlesscase-sensitive is non-nil . Returnst if replacement was
performed.

:find [Generic Function]

Arguments: pane

Package: keyword

3 - 38 ALLEGRO CL for Windows: Programming Tools

■ displays a dialog which requests a search string and options and then calls
string-search .

:find-same [Generic Function]

Arguments: pane

Package: keyword

■ looks for another occurrence of the last search string using the same search
options. If the text is not found or there is no current search string,:find -
same beeps and does nothing.

:find-clipboard [Generic Function]

Arguments: pane

Package: keyword

■ uses the top item of the Lisp Clipboard as the target search string. If it is
not a string, a dialog is displayed which allows the user to convert the object
or abandon the search.

:replace [Generic Function]

Arguments: pane

Package: keyword

■ displays a dialog which prompts the user for a target string, a replacement
string and search options and then carries out the replacement operation.

:replace-same [Generic Function]

Arguments: pane

Package: keyword

■ carries out a string replacement operation using the last specified target
string, replacement string and options.

3.16.14 Access to information and documentation

The following functions provide information on the next symbol in the source text. If the
file position is inside a symbol, that symbol is used; otherwise, information is printed on
the symbol found by searching forwards through the text.

ALLEGRO CL for Windows: Programming Tools 3 - 39

Text editor

:apropos [Generic Function]

Arguments: pane

Package: keyword

■ searches for all symbols which have the print name of the current symbol
as part of their own print name, and for each symbol prints information to
*help-output * about its definition and dynamic binding.apropos is
described in the Online Manual.

:lambda-list [Generic Function]

Arguments: pane

Package: keyword

■ prints the lambda list of the current symbol to the stream that is the value
of *help-output *.

:documentation [Function]

Arguments: pane

Package: keyword

■ prints the documentation associated with the current symbol to *help-
output *. See the entry ondocumentation in the Online Manual.

:describe [Function]

Arguments: pane

Package: keyword

■ prints information about the current symbol to *help-output * by call-
ing the functiondescribe (see the entry ondescribe in the Online Man-
ual).

:build-call [Generic Function]

Arguments: pane

Package: keyword

■ takes the current symbol as a function, analyses its lambda list and pushes
a prototype call onto the top of the Lisp Clipboard.:build-call does noth-
ing if there is no function definition associated with the current symbol.

3 - 40 ALLEGRO CL for Windows: Programming Tools

:find-definition [Generic Function]

Arguments: pane

Package: keyword

■ attempts to find source code for the current symbol.

3.16.15 Access to debugging tools

The functions described in this section give access from text editors to the trace, breakpoint
and profile facilities of Allegro CL for Windows. These debugging tools are further
described in Chapter 6 of this manual. The symbol passed to the appropriate debugging
macro must have an associated global function definition.

:trace [Generic Function]

Arguments: pane

Package: keyword

■ calls the macrotrace with the current symbol as its argument.

:breakpoint [Generic Function]

Arguments: pane

Package: keyword

■ callsbreakpoint with the current symbol as its argument.

:profile [Generic Function]

Arguments: pane

Package: keyword

■ callsprofile with the current symbol as its argument.

:untrace [Generic Function]

Arguments: pane

Package: keyword

■ untrace s the current symbol.

ALLEGRO CL for Windows: Programming Tools 3 - 41

Text editor

:unbreakpoint [Generic Function]

Arguments: pane

Package: keyword

■ unbreakpoint s the current symbol.

:unprofile [Generic Function]

Arguments: pane

Package: keyword

■ unprofile s the current symbol.

3.16.16 Recursive editing

:inspect [Generic Function]

Arguments: pane

Package: keyword

■ invokes the inspector according to a decision made in a dialog to edit all
forms in the selected region.:inspect does nothing if there are no lists
within the selection.

3.16.17 Miscellaneous

:undo [Generic Function]

Arguments: pane

Package: keyword

■ undoes the effect of the most recent operation inpane . A second call to
:undo redoes it.

:revert-to-saved [Generic Function]

Arguments: pane

Package: keyword

■ discards any changes made to the contents ofpane since it was last saved.

3 - 42 ALLEGRO CL for Windows: Programming Tools

:modified-p [Generic Function]

Arguments: pane

Package: keyword

■ non-nil if changes have been made topane but have not been saved.

clear-modified-flag [Function]

Arguments: pane

Package: text-edit

■ clears the modified flag ofpane .

insert-empty-string [Function]

Arguments: pane

Package: text-edit

■ inserts two “ (double quote) characters and leaves the file position between
them.

brackets-matched-p [Function]

Arguments: pane start end

Package: text-edit

■ returns a non-nil value if betweenstart andend all opening parenthe-
ses are balanced by at least the same number of closing parentheses.

count-bracket-mismatch-between-positions [Function]

Arguments: pane start end

Package: text-edit

■ counts the parenthesis mismatch between file positionsstart andend .
Ordinary parentheses and super-brackets are dealt with together. The parenthe-
sis mismatch between the two positions is returned. A positive mismatch value
means that there are too many opening parentheses.

ALLEGRO CL for Windows: Programming Tools 3 - 43

Text editor

3.16.18 Loading and saving files

edit-file [Function]

Arguments: dummy &optional pathname

Package: text-edit

■ opens a file for text editing. Ifpathname is nil or not supplied,
cg:pop-up-open-file-dialog is used to obtain apathname . If the
file is already being edited, the appropriate Text Edit pane is selected. If not, a
new pane is opened andload-file is used to copy the text into it.

load-file [Generic Function]

Arguments: pane & optional file

Package: text-edit

■ copies the text from file intopane . file should be a namestring or path-
name referring to an existing file which can be opened using :element-
type character orstring-char . If file is nil or is not supplied, the
functioncg:pop-up-open-file-dialog is used to obtain a pathname.
After load-file has been called, (file pane) returnsfile . load-
file returnst to indicate success, ornil if the user aborted the loading pro-
cess.

analyse-definitions-on-opening [Variable]

Package: text-edit

■ if non-nil text files will be scanned to record the definitions in them,
whenever they are opened. Ifnil this analysis is suppressed.

file [Generic Function]

Arguments: pane

Package: text-edit

■ returns the pathname of the file in which the contents ofpane are saved
or nil if it has not yet been saved. The value returned byfile is affected by
load-file andsave-file.

save-file [Function]

Arguments: pane & optional file

3 - 44 ALLEGRO CL for Windows: Programming Tools

Package: text-edit

■ copies the text inpane to file. file must be a namestring or path-
name. If file is not supplied or its value isnil , cg:pop-up-open-
file-dialog is used to obtain a pathname.file is created if it does not
already exist. If it does exist, it is deleted and a new file with the same name is
created. Aftersave-file has been called, (file pane) returnsfile , and
(modified-p pane) returnsnil . save-file returnst to indicate suc-
cess, ornil if the user aborted the saving process.

:save [Generic Function]

Arguments: pane

Package: keyword

■ equivalent to (save-file pane (file pane)).

If the contents of a text-edit-window need to be saved, the title will show an asterisk (*).
This asterisk is not part of the title string. This behavior is controlled by the following vari-
able.

flag-modified-text-windows-p [Variable]

Package: text-edit

■ When this variable is true, the titles of text-edit-windows that need to be
saved will contain an asterisk (*). The asterisk is not part of the title string.
When this variable is nil, no such asterisk is displayed. The initial value ist .

3.16.19 Symbol completion and lambda lists

quick-lambda-list [Function]

Arguments: window &optional (always-p t)

Package: text-edit

■ This function displays lambda-list information in the status bar about the
current symbol ofwindow (that is, the symbol at the text cursor in window).
If the symbol has a function binding, then the type of function binding (func-
tion, generic function, macro, or special form) is displayed at the left, followed
by the symbol name, followed by the names of the function's parameters.

ALLEGRO CL for Windows: Programming Tools 3 - 45

Text editor

If the current symbol has no function binding but does have a variable
binding, then the value of the variable is displayed. Other messages are dis-
played if the current symbol has no binding, or if the string at the text cursor
does not name a symbol.

If the symbol name string contains a package prefix, then that package is
searched for the symbol, otherwise the package of window is searched.

If always-p is non-nil , then the message is always displayed as
described above. If it isnil , then the message is printed only when there is a
bound symbol, the lambda list is displayed only if the symbol name string is
immediately preceded by either an open parenthesis or a single quote, and no
message is displayed if the previous status bar message was a quick-lambda-
list for that same symbol.

quick-lambda-list-and-insert-space [Function]

Arguments: window &optional always-p

Package: text-edit

■ Like te:quick-lambda-list , but also inserts a space at the text cur-
sor in window, so that this function can handily be assigned to the space bar as
it is by default in the built-in comtabs. Note that the default value ofalways-
p is nil (its default ist for te:quick-lambda-list).

complete-symbol [Function]

Arguments: window

Package: text-edit

■ This function enters characters intowindow so as to complete a partially-
typed symbol name. If there is only one possible completion, then the charac-
ters are inserted immediately; otherwise a menu is popped up containing the
possible completions. If a choice is selected from the pop-up menu, then char-
acters are inserted so as to complete the selected symbol; otherwise no com-
pletion is done. A symbol can be selected from the pop-up menu either by
clicking it or by typing the single letter displayed to the left of each symbol on
the menu.

If there are more thante:*max-symbol-completion-choices*
(defined next) possible completions, then a message indicating this is printed
in the status bar, no menu is popped up, and no completion is done.

3 - 46 ALLEGRO CL for Windows: Programming Tools

If the symbol name string contains a package prefix, then that package is
searched for the symbol, otherwise the package of window is searched.

max-symbol-completion-choices [Variable]

Package: text-edit

■ The maximum number of symbol completions that will be displayed in a
symbol completion pop-up window. If more than this number of possibilities
exist, that fact will be printed to the status bar and no symbol completion win-
dow will be displayed. the initial value of this variable is 50.

3.16.20 Text editor comtabs

The diagram below illustrates the relationship between the Text Editor comtabs. For more
general information on comtabs, refer to Chapter 9 of this Guide.

ALLEGRO CL for Windows: Programming Tools 3 - 47

Text editor

raw-text-edit-comtab

host-comtab

emacs-comtab

mac-comtab

brief-comtab

text-edit-comtab

implements minimal editor, menu
functions and commands

These implement different key
bindings

inherits from the keybinding
comtabs according to the text edit

mode

3 - 48 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

ALLEGRO CL for Windows: Programming Tools 4 - 1

Inspector

Chapter 4 The Inspector

The Inspector takes its name from its ability to inspect, and in most cases, edit the contents
of any Lisp data structure. The Inspector can make dynamic changes to bitmaps, array ele-
ments, structures and other objects that have already been defined in your Lisp system.
Since the changes are effected through a standard interface, the Inspector is easy to use. In
conjunction with the Debugger, it is particularly suited to tracking down problems and
patching up erroneous values.

Bringing up an inspector window 1: right-button menu
Depressing the right mouse button over a selected object displays a menu of choices appro-
priate to the object. For most Lisp objects, the top item in the right button menu is the name
of the object itself. Choosing that top item causes an inspector window for the object to be
displayed.

Bringing up an inspector window 2: Tool/Inspect menu
You can also select a selected object by choosing the menu itemInspect Selected Object
from the Inspect submenu of the Tools menu. (Ctrl-I is the keyboard equivalent).

Bringing up an inspector window 3: inspect function
inspect takes a Lisp object as its one argument and displays an inspector window for that
object. Thus(inspect ’foo) display an inspector window for the symbolfoo .

Closing inspector windows
Inspectors windows can be closed by choosingClose from the File menu (or the Manage
submenu of the Window menu) or by clicking in the close box of the window. Choosing
Close All Inspectors from the Inspector submenu of the Tools menu closes all inspector
windows.

4 - 2 ALLEGRO CL for Windows: Programming Tools

Inspecting fixnums
Fixnums are such uninteresting objects that a call to inspect one is taken as a call to change
its value, so a type-in window asking for a new value is displayed rather than an actual
inspector window.

4.1 Using the Inspector - an example

The best introduction comes from guiding you through a simple example which edits the
value of a slot in a Lisp structure. The Lisp source code you need can be found part way
through the file called\ex\lang\09data.lsp, supplied with your Lisp system. Open the file
and scroll through it until you find the region with**Defining structures**
shown below. You can of course simply type in and evaluate the expressions rather than
work from the file supplied on disk. We have opened the file, found the location of interest
and selected the structure definition by double-clicking on the opening parenthesis:

Press Alt-Enter, which causes the structure definition to be evaluated, creating a new
type of Lisp object calledperson . The result of the evaluation is printed in the Toploop
window.

ALLEGRO CL for Windows: Programming Tools 4 - 3

Inspector

The slot names in the structure arefamilyname , sex , age andoccupation , all of
which default to the symbolunknown .

Now, in the 09data.lsp window, go down to the secondsetf form (starting
(setf ;Defining person fred with known components.), scrolling
if necessary. Double-click on the parenthesis preceding thatsetf .

then press Alt-Enter. Thesetf form is evaluated and the result is printed in the Toploop
window.

4 - 4 ALLEGRO CL for Windows: Programming Tools

You have created aperson structure representing Mr. Smith, a thirty year-old pro-
grammer, held as the value of the symbolfred . Consider what would be necessary to mod-
ify, say, the age offred from the numerical value of 30 to the text “Thirty”. In Lisp, the
code would be:

(setf (person-age fred) "Thirty")

In this expression,person-age is known as an accessor function since it accesses the
age slot of aperson structure (represented here by the symbolfred) and returns the
value found there. This is all very well if you are familiar with the many accessor function
names of Common Lisp, but the advantage of the Inspector lies in providing a more intui-
tive way of achieving the same result without a detailed knowledge of Lisp.

Try making the change tofred outlined above by using the Inspector. The first step is
to select the textfred anywhere on the screen. We select it in the 09data.lsp window:

Choose Inspect Selected Object from the Inspect submenu of the Tools menu. Many
items in menus have keystroke equivalents. These are given on the right-hand end of the
line containing the item in the menu. Thus, for example, Ctrl-I is the keyboard shortcut for
Inspect. However it is invoked, the result is an Inspector window appears, displaying the
value of each of the symbolfred ’s cells on a separate line.

ALLEGRO CL for Windows: Programming Tools 4 - 5

Inspector

The Inspector works recursively and can be used to probe further into any of the data
structures shown, but only values preceded by a* (Value , Function , andplist in the
illustration) can be modified. In nearly all instances, changes made to objects are to the
originals, i.e. they are destructive. If you make a mistake or want to backtrack over your
steps, you can repeatedly selectUndo from the Edit menu. If you wish to go back several
steps,Undo to Before may be more convenient.Revert to Saved in the File menu takes
you back to the first entry of the Undo history.

Note that one line (the first in the illustration above) is shaded, indicated it is selected.
You can select a line by clicking over the line or by moving up with the↑ key or down with
the↓. Select the line of text displaying the value offred by using either the cursor keys
↑↓ or by clicking somewhere on that line.

We want to further inspect the value. To do so, you can, as before, chooseInspect
Selected Object from the Inspect submenu of the Tools menu; or use the keyboard equiv-
alent Ctrl-I. Further, within the Inspector and Debugger Backtrace windows, you can also
double-click on an item. Perform any one of these actions and a new Inspector window
opens up showing the slots within a Lispperson structure.

Most Lisp objects use this screen layout for the Inspector window. The first line speci-
fies the object under inspection; each subsequent line carries the name of a slot followed by
its value. The slot names depend on the object. Values preceded by a* can be modified.

We want to modify the value of theage slot. To modfiy a slot (that can be modified),
simply select it by clicking over it and type a space (or any key). A type in area appears over
the value of the field, as shown in the next illustration. (We have already typed the new
value, the string "Thirty".)

4 - 6 ALLEGRO CL for Windows: Programming Tools

Type in the string “Thirty”, as shown,and press Enter. The text should be enclosed in
quotes so that it is read into Lisp as a string, not as a symbol name. If you decide not to
change the value after you have started typing, press the Escape key and the type-in area
will disappear with the value unchanged.

After Enter is pressed. the value is changed. You can see this be evaluating(person-
age fred) in the Toploop window (we have cleared the earlier contents of Toploop):

You can still undo the changes by choosingUndo from the Edit menu. If you were to
exit the Inspector now (by closing the Inspector windows), the modified value of “Thirty”
would be saved as a permanent change tofred .

To continue with the example, double-click on theage slot to inspect the string
“Thirty”.

ALLEGRO CL for Windows: Programming Tools 4 - 7

Inspector

“Thirty” is inspected as a string in terms of its constituent characters which you can edit
just as before. The point to note is that the Inspector has built-in methods for displaying
each type of Lisp object. You will see later how you can inspect a Lisp bitmap in a pictorial
representation rather than as text.

Returning to the example, close the last window and click on theoccupation slot of
the structure.

We want to modify the value fromprogrammer to analyst . Again, with the occu-
pation line selected (as in the illustration above), simply start typing. A type-in area appears
when you press the first keyboard key (but this character is not entered). Then type the new
value. In the illustration above, we have already typedANALY.

Finish typingANALYST. As soon as you press Enter, Lisp updates the value (press
Escape to cancel the change before pressing Enter):

If you entered a string, the update occurs as soon as the closing" is entered. Again, you
can undo the change by choosingUndo from the Edit menu.

In this example the symbol has been automatically uppercased. Such effects are con-
trolled by the reader and printer preferences (seeSetting Your Preferred Lisp Environ-
ment in Chapter 2 of this manual).

4 - 8 ALLEGRO CL for Windows: Programming Tools

The Undo facility has already been mentioned. The Edit menu itemsCut, Copy, Paste;
theBackspace andDelete keys are all available with the restriction that non-* ’ed items can
only be copied.Cut is the combination ofCopy followed byDelete.

To illustrate this, select thefamilyname slot containing the symbolsmith then
chooseCopy. The value is copied into the Lisp Clipboard. Select theoccupation slot
followed byPaste. The new symbol is inserted. The next illustration shows the Inspector
window after this operation:

The Delete and Backspace keys andDelete in the Edit menu attempt to set the slot to a
default value. In the case offred , the structure was defined with slots defaulting to the
symbolunknown . This can be verified by clearing one of the slots.

Select thefamilyname slot containing the symbolsmith then press Backspace. The
structure slot is cleared to its default valueunknown .

To leave the Inspector, chooseClose All Inspectors from the Inspect submenu of the
Tools menu. Or, after first making sure an Inspector window is uppermost, selectClose All
from the File menu. All changes to the inspected object are automatically saved.

ALLEGRO CL for Windows: Programming Tools 4 - 9

Inspector

4.2 Inspecting Bitmaps

A feature of the Inspector is the way in which it can be configured to display different types
of Lisp object in different ways. For most objects, a text window suffices with each line car-
rying information about a slot. An exception is the Bitmap Editor which can be used instead
of a textual editor whenever a bitmap object or bitmap definition is inspected. This section
guides you through an example. The Lisp source code you need can be found part way
through the file\ex\cg\misc\06textur.lsp supplied with your Lisp system.

Open the file and scroll through it until you find the region shown below. You can type
in and evaluate the expressions rather than work from the file supplied.

Warning: unlike edits made with the standard Inspector window, bitmap
edits cannot be undone, so take care to make copies of important bitmaps
and edit the copies.

Double-click on the bracket precedingsetf , so the whole form is selected. Then press
Alt-Enter. The form will be evaluated and the result printed in the Toploop window.

We have defined a Lisp texture represented by the symboltriangle-texture . A
texture is a type of bitmap: a two-dimensional array whose elements are 0 or 1. Their use

4 - 10 ALLEGRO CL for Windows: Programming Tools

is described in theCommon Graphics Introductory Guide, but they are introduced here to
demonstrate the Bitmap Editor.

Select the symboltriangle-texture then selectInspect Selected Object in the
Inspect submenu of the Tools menu to inspect its value.

The cell values of the symboltriangle-texture are displayed. Double-click on
thevalue slot.

ALLEGRO CL for Windows: Programming Tools 4 - 11

Inspector

A fixed-size Bitmap Editor window appears. By default, the Inspector uses the Bitmap
Editor whenever the inspected object is of the appropriate type. The contents of the bitmap
are mapped onto the screen as a grid. A black square signifies a 1 in the bitmap at that point;
a white square, a 0.

Use the mouse to edit the bitmap. Clicking on a square inverts its state, so white 0 goes
to black 1 and black 1 goes to white 0. If you depress the mouse then drag to a new position,
all squares under its path will be set to the same state as at the starting position. As with
many things, it is simpler to do than say, so try editing thetriangle-texture bitmap.

Experiment with clicking and dragging the mouse on the bitmap.

When you are satisfied with your revised bitmap, close the Bitmap Editor window. Note
again that the bitmap is destructively modified as you edit so there is no way to retrieve the
original bitmap except by re-evaluating the code that produced the bitmap in the first place.
For this reason, we recommend editing copies of bitmaps rather than originals. When you
close the Bitmap Editor window, the underlying Inspector window is updated to reflect the
changes made.

Conclude the demonstration by closing any remaining Inspector windows.

4 - 12 ALLEGRO CL for Windows: Programming Tools

4.3 Inspecting System Data

Inspecting the current status of system variables is particularly simple. A list of useful val-
ues is available on a menu to make access easy. The information can be helpful during
debugging. ChooseInspect System Data from the Inspect submenu of the Tools menu.

The sub-submenu lists useful system objects. Since some of the objects are currently in
use, you are only allowed to inspect a copy of the original. For example, it is not wise to
destructively modify a texture since that would modify all uses of the texture at once.

Select the required object from the entries, or click outside the menu to make no selec-
tion.

4.4 Inspector Preferences

You can alter some of the default actions of the Inspector. For example, it is possible to
inspect bitmaps as Lisp arrays rather than by using the Bitmap Editor.

ALLEGRO CL for Windows: Programming Tools 4 - 13

Inspector

ChooseMain Preferences from the Preferences menu and click on the Inspector tab.
The following form appears:

Most entries are self-explanatory. The two variables defined just below,*inspect-
all-slots* and *sort-inspected-slots* , allow users who preferred the 2.0
behavior to the new 3.0 behavior to get it (as the variable definitions describe).
inspect-length limits the total number of slots displayed in any one Inspector win-
dow. The boxes next the boolean variables indicate whether the value is true or false. A
check in the box means the value is true, an empty box means the value is false. You can
modify the variables as desired with the mouse. Your changes will be effected when you
click onApply (masked in the illustration but unmasked as soon as any value is changed)
or Save (which also does an apply as well as saving the preferences to a file). Clicking on
Close discards your changes and leaves the variables unmodified whileRevert undoes all
modifications since the were last Applied or Saved (or original values if neitherApply or
Save have been clicked on). ClickingClose closes the window.

Clicking on either of the font button brings up a dialog allowing you to set the font used
in Inspector windows.

4 - 14 ALLEGRO CL for Windows: Programming Tools

Variables that preserve release 2.0 inspector look-and-feel
There are two changes in release 3.0 compared to release 2.0: all slots of an object are dis-
played (rather than just some) and slots are listed alphabetically. This behavior is controlled
by the following two variables, which are both initially true. Set them tonil if you pre-
ferred the 2.0 behavior.

inspect-all-slots [Variable]

Package: inspector

■ If non-nil , then the built-in inspect-object methods that otherwise display
only some of the slots of a standard-object will instead display them all. Initial
value ist .

sort-inspected-slots [Variable]

Package: inspector

■ If non-nil , then the default inspect-object methods for standard-object
and structure-object will list the slots alphanumerically. Initial value ist .

4.5 Using The Inspector - Summary

Here is a summary of the steps required to use the Inspector:

1. Select a Lisp object. In most cases, do this by double-clicking in the object’s
symbol but you can also select a printed representation of an object displayed
in an Inspector window.

2. Open the Inspector. ChooseInspect Selected Object from the Inspect
submenu of the Tools menu. Ctrl-I is a quicker keystroke alternative. Within
the Inspector and Debugger windows you can also double-click on an item. A
window opens displaying the slots of the inspected object.

3. Inspect/Edit the attributes of the object as required. Inspect an attribute
further by double-clicking on it. Edit by pasting in a new value, pressing
backspace to clear the existing value (replacing it with its default if any is
defined), or type in Lisp text directly from the keyboard. Changes can usually
be undone, step by step.

ALLEGRO CL for Windows: Programming Tools 4 - 15

Inspector

4. Close the Inspector. ChooseClose All Inspectors from the Inspect submenu
of the Tools menu. Or make sure an Inspector window is active and select
Close All from the File menu. All changes are automatically saved.

4 - 16 ALLEGRO CL for Windows: Programming Tools

4.6 Inspector internals

This section was chapter 4 of theInside Progamming Tools manual in release 2.0.

The window-based Inspector is used to examine Lisp data structures of any complexity.
It allows you to browse recursively through objects and make changes tosetf able fields.

Earlier sections in this chapter provide an introduction to using the Inspector on your
system. This chapter describes the functions which allow you to invoke the Inspector under
program control, define new inspectors or modify the actions of existing ones.

The Inspector consists of two parts: theInspector Pane with its associated comtab, and
the Inspection Manager. The Inspector Pane handles screen events via its command table.
The Inspection Manager defines the way that objects are displayed, including their slot
names and the way in which the slots may be updated. It also installs any extra comtab
entries and menus required by the Inspector.

Typically the Inspector displays the contents of an object as slot-value pairs. A slot
which has an associatedsetf method may be modified (cleared, cut, pasted etc.). Other-
wise the slot is read-only, and operations are restricted to recursive inspecting, copying and
so on.

Most symbols naming functions, variables, etc. discussed in this chapter are in the
inspector package. This package is not used by default bycommon-lisp-user and
is not in the default use list of the various package creation functions. Therefore, you must
either use theinspector package or qualify the symbols (withinspector: or
insp:) when referring to them.

4.6.1 Program interface

The programmers interface to the Inspector is provided by the following functions.

inspect [Function]

Arguments: object &key (:windup-fn #’identity)

Package: common-lisp

ALLEGRO CL for Windows: Programming Tools 4 - 17

Inspector

■ invokes the Inspector onobject using a method which depends on the
type ofobject . :windup-fn is a function of one argument which is called
on exit from inspect and by theSave andSave as... menu options. It is
responsible for savingobject back to its place of origin. The default,
#’identity , does not attempt to saveobject .

edit-bitmap [Function]

Arguments: bitmap windup-fn

Package: inspector

■ calls the bitmap editor to editbitmap , which must be a two-dimensional
bit array.windup-fn is a function of one argument (the editedbitmap)
which is called on exit fromedit-bitmap and should save thebitmap to
its place of origin.

4.6.2 Inspector control variables

The special variables described in this section allow you to control the way in which many
Lisp types are inspected.

inspect-length [Variable]

Package: inspector

■ is the maximum number of slots displayed in an Inspector Window. The
initial value of*inspect-length* is 300.

inspect-list [Variable]

Package: inspector

■ controls the inspection of lists.*inspect-list* may have the follow-
ing values:

• :sequence . Where possible, lists are inspected as sequences. If the list
is circular or the last cons in the list is a dotted pair, the Inspector may
invoke the Structure Editor.

• :plist. The Inspector displays lists as property-value pairs. To be
inspected as aplist , the list must have an even number of members,
and the first and every odd item must be symbols.

4 - 18 ALLEGRO CL for Windows: Programming Tools

• :alist . The inspector displays lists as association lists. Every member
of a list must be a cons for it to be displayed in this form.

■ The value of*inspect-list* does not compel the inspector to display
lists in the requested format. If the inspected object is incompatible with
inspect-list , it is inspected using the Structure Editor. The Structure
Editor is always used, regardless of the value of*inspect-list* , if the
list is circular.

inspect-bit-vector-as-sequence [Variable]

Package: inspector

■ if this variable is non-nil , bit vectors are inspected as sequences. Other-
wise, they are inspected in their usual printed representation (#*...).

inspect-bitmap-as-array [Variable]

Package: inspector

■ if non-nil , bitmaps (two-dimensional bit arrays) are inspected as arrays;
otherwise, the bitmap editor is used.

inspect-string-as-sequence [Variable]

Package: inspector

■ if this variable is non-nil , strings are inspected as sequences. Otherwise,
they are inspected in their usual printed representation ("...").

inspect-structure-as-sequence [Variable]

Package: inspector

■ if this variable isnil , structures are inspected as slot name-value pairs.
Otherwise, structures are inspected simply as numbered slots, as if the struc-
ture were a vector. This overrides any specific methods for types which are
implemented as structures. For example, if building is defined as a structure:

(defstruct building (height ...

and*inspect-structure-as-sequence* is non-nil , buildings will
be inspected as sequences irrespective of any inspection method which may
have been defined for the type building.

sequence-structure-slots-settable [Variable]

Package: inspector

ALLEGRO CL for Windows: Programming Tools 4 - 19

Inspector

■ if non-nil , then the slots in any structures displayed as sequences are
made settable. You should exercise caution in using this option, because slots
which have been declared :read-only may be modified.

4.6.3 Defining new inspectors

The Allegro CL for Windows Inspector is totally customizable. Theinspect-object
generic function allows you to inspect your own data types or system data types in any for-
mat you wish. For most Lisp objects, the slot-value pair format provided by the functions
inspect-with and inspect-with-slots is appropriate, but for some objects
(such as bitmaps) a radically different approach is more useful.

It is important to remember that the Inspector is divided into two parts. The Inspection
Manager decides which object slots are to be displayed and how the slots are updated. It
also adds any extra command table entries and menus required, but it does not actually han-
dle any events. These are the responsibility of the Inspector Pane, which takes care of
screen handling and command dispatch. The interface between the two parts is in terms of
a non- negative integer called the slot index which identifies each field within a Lisp object.
There is usually a simple relationship between the slot index, the corresponding field in the
Lisp object and the position of the slot in the Inspector window. In the case of a vector, slot
index n could have a simple interpretation as(aref object n) , and the corresponding
element would be displayed on line n+1 of the Inspector window. However, it would be
possible for the Inspector to display the elements in reverse order, or perhaps to omit some
of them, by changing the mapping between the index and vector element.

For example, if a cons is inspected in the usual line-by-line style:

a description of the cons is printed on line 0 of the window;
slot index 0 is its car (displayed on line 1); and
slot index 1 is its cdr (on line 2 of the window).

inspect-object [Generic Function]

Arguments: (object type) windup-fn

Package: inspector

4 - 20 ALLEGRO CL for Windows: Programming Tools

■ defines an Inspector for objects oftype , which may be any user-defined
structure type or one of the following system types:

■ The first argument is the object to be inspected. The second is a windup
function which is responsible for saving the object when it has been inspected.
Seeinspect-with for a description of the windup function.
■ It is not usually necessary to write completely new Inspectors, since
inspect-with andinspect-with-slots provide most of the facili-
ties needed. In the example below, an Inspector for complex numbers is
defined usinginspect-with-slots to carry out almost all of the process-
ing.

(in-package ’inspector)

(defmethod inspect-object ((number complex) windup-fn)

(inspect-with-slots number windup-fn #’true

’(("Real part" realpart)

("Imaginary part" imagpart))))

inspect-with [Function]

Arguments: object windup-fn open-fn slot-name-fn
slot-value-fn &optional
(slot-validp-fn #’false) slot-setting-fn
slot-default-fn

Package: inspector

■ inspectsobject using the standard slot-value format. The action of the
Inspector is controlled by the functions passed as parameters toinspect-
with .

array bignum bit-vector bitmap

character complex cons fixnum

float list ratio string

structure symbol vector

ALLEGRO CL for Windows: Programming Tools 4 - 21

Inspector

■ windup-fn is a function of one parameter which may be called when the
Inspector forobject is closed. The parameter is the modified version of
object . windup-fn is responsible for saving it to wherever is appropriate.
If the original and inspected forms ofobject areeql , windup-fn is not
called at all. Pass#’false if you do not need to saveobject .
■ open-fn initializes the Inspection Manager.open-fn is a function of
two parameters:

(defun specific-open-fn (window object) (...

where the first argument is the inspector window and the second is the object
to be inspected. Typically you would use this function to install specific menus
and command table entries.
■ slot-name-fn is a function of two arguments: the object being
inspected and a slot index. This function should return the name of the slot with
the given index, ornil if the index is out of range. The index is guaranteed to
be non-negative.
■ slot-value-fn is a function of two arguments: the object being
inspected and a slot index.slot-value -fn should return the value of the
slot with this index.
■ slot-validp-fn is used to check values before installing them in
object slots. It is a function of three arguments: the object, slot index and
value. This function should return a non-nil value if the value can be installed
at the given slot index. The default value,#’ false , always returnsnil and
allows none of the slots to be changed.
■ slot-setting-fn is a function of three arguments: the object, slot
index and value.slot-setting-fn should set the appropriate slot to the
specified value. This function is only called ifslot-validp-fn has indi-
cated that the value is acceptable.
■ slot-default-fn is a function of two arguments: the object and a slot
index.slot-default-fn should return a form which can be evaluated to
produce the default value of the specified slot. If this function is absent, the
slots cannot be cut or deleted.

inspect-with-slots [Function]

Arguments: object windup-fn open-fn slot-descriptions

Package: inspector

4 - 22 ALLEGRO CL for Windows: Programming Tools

■ provides a declarative way of entering the Inspector. Theobject,
windup-fn and open-fn arguments are identical to the corresponding
arguments ofinspect-with .
■ slot-descriptions is a list containing a description of each slot in
object . Each slot description is a list containing:

• The slot name as a string or symbol.

• The accessor function fn such that (fnobject) returns the value of the
slot.

• A default value to be installed if the slot is cut or deleted (see
inspect-with).

• The type ofobject held in the slot. This is used to vet any new values
stored in this field. Uset if theobject can hold data of any type.

Supply only the first two slot description items if the slot cannot be modified.

The example below shows a declarative inspector for the building type. The location,
use and value fields are displayed; the location is read-only, and the value field can store
integers. Cut or Delete operations set value to zero.

(defmethod inspect-object ((object building) windup-fn)
(inspect-with-slots object windup #’true

’(("Location is" building-location)
("Use is" building-use :unknown t)
("Value is" building-value 0 integer))))

4.6.4 Inspector panes

inspected-object [Function]

Arguments: pane

Package: inspector

■ returns the object being inspected inpane , which must be an
inspector-pane or aninspector-window .

redisplay-inspector-window [Function]

Arguments: pane

ALLEGRO CL for Windows: Programming Tools 4 - 23

Inspector

Package: inspector

■ makes the Inspector redisplaypane , which must be astructure-
edit-pane . This function should be called when an inspected object has
been changed by side effects (for example, by the action of a pop-up menu).

4.6.5 An example

This section gives a complete example of an inspector written using bothinspect-
with-slots and inspect-with . It shows how to write all the support functions
which may be needed by the Inspector, but it is far longer and more detailed than most
Inspectors you will need to write. Most Inspectors need no more than a simple declarative
call to inspect-with-slots , with no associatedopen-fn .

The example installs an Inspector for the type point, which is a user-defined structure
with three fields: an identity (x, vertex-1 etc.), the point’s x-coordinate and its y- coordinate.
point-x and point-y are stored in Cartesian coordinates, lending itself naturally to an imple-
mentation usinginspect-with-slots . However, we also wish to be able to inspect
points in circular coordinates. The method used is controlled by the value of*inspect-
points-as-circular* . In this case, the inspection manager needs to map between
the slot values and the displayed representation using the transformation formulae

x = r cosθ y = r sinθ
r = (x2+y2) q = tan-1(y /x)

The implementation of inspection in circular coordinates usesinspect-with , and
this example shows you how to define the auxiliary functions needed to provide access to
point slots.

First, the initialization of variables and the definition of point. Theid field is made
:read-only .

(in-package ’inspector)

(defstruct point
(id nil :read-only t)

(x 1 :type number)
(y 1 :type number))

4 - 24 ALLEGRO CL for Windows: Programming Tools

(setq a (make-point :id ’vertex-1 :x 2 :y 3))
(setq b (make-point :id ’vertex-2 :x -3 :y 6.2))
(defvar *inspect-point-as-circular* nil)

Now, the definition of the Inspector itself. The Inspector body simply callsinspect-
point . This in turn looks at the value of*inspect-point-as-circular* . If it is
nil , inspect-with-slots is called. Otherwise,inspect-with is called to
inspect the point in circular coordinates.

(defmethod inspect-object ((object point)windup-fn)
(inspect-point point windup-fn))

;;; The main inspection function for points. If
;;; *inspect-point-as-circular* is false, points are
;;; inspected in Cartesian format. This is done by
;;; inspect-with-slots , which just extracts the
;;; values from the appropriate structure fields.
;;; Only x and y slots are settable.
;;;
;;; Inspection in circular form involves translation
;;; between the internal x-y representation and
;;; r-theta form. It uses inspect-with together with
;;; appropriate support functions.

(defun inspect-point (point windup-fn)
(if *inspect-point-as-circular*

(inspect-with
point
windup-fn
#’inspect-point-open-fn
#’inspect-circular-slot-name-fn
#’inspect-circular-value-fn
#’inspect-circular-validp-fn
#’inspect-circular-setting-fn
#’inspect-circular-default-fn)

(inspect-with-slots
point
windup-fn
#’inspect-point-open-fn

ALLEGRO CL for Windows: Programming Tools 4 - 25

Inspector

’(("Identity" point-id)
("x-coord" point-x 0 number)
("y-coord" point-y 0 number)))))

Theopen-fn adds a pop-up menu to the Inspector pane when it is opened. This con-
tains four items: (1,0), (0,1) (1,0) and (0, 1). Choosing one of them sets the point to the cho-
sen value. The Inspector pane then has to be redisplayed so that it shows the correct value.

;;; Definition of the Inspector open-fn.
;;; inspect-point-open-fn attaches the pop-up menu to
;;; the point inspector pane.

(defun inspect-point-open-fn (pane object)
(set-window-menu pane ’menu *inspect-point-menu*))

;;; inspect-point-menu returns a menu which can then be
;;; attached to the Inspector window. It contains four
;;; items. The value returned by a menu selection is of
;;; the form
;;;
;;; ’(function-to-call x-value y-value)
;;;
;;; This is then used by the menu selection function
;;; do-inspector-menu-command

(defun inspect-point-menu ()
(setq *inspect-point-menu*

(open-menu
’(#S(menu-item :name "(1,0)"

:value (set-point 1 0))
#S(menu-item :name "(0,1)"

:value (set-point 0 1))
#S(menu-item :name "(-1,0)"

:value (set-point -1 0))
#S(menu-item :name "(0,-1)"

:value (set-point 0 -1)))
’pop-up-menu *lisp-main-window* :selection-function
#’do-inspector-menu-command)))

4 - 26 ALLEGRO CL for Windows: Programming Tools

;;; For convenience, set a special variable to the
;;; menu.

(defvar *inspect-point-menu* (inspect-point-menu))

;;; do-inspector-menu-command takes apart the structure
;;; returned by the pop-up menu and calls the appropriate
;;; function. It includes the window and inspected
;;; object in the argument list.

(defun do-inspector-menu-command (menu menu-item stream)
(let ((window (selected-window (selected-window-stream)))

(menu-item-value (menu-item-value menu-item)))
(funcall

(first menu-item-value) ; The function to call
window ; Inspector window
(inspected-object window) ; The point.
(second menu-item-value) ; X coordinate to set.
(third menu-item-value)))) ; Y coordinate to set.

;;; set-point changes the inspected point in response to
;;; a pop-up menu selection.
;;; It changes point-x and point-y, then tells the
;;; Inspector to redisplay the window because the
;;; Inspector doesn’t know about the change.

(defun set-point (window point x y)
(setf

(point-x point) x
(point-y point) y)

(redisplay-inspector-window window))

The functions defined above support the Cartesian inspection mode completely, includ-
ing its pop-up menu. The remainder of the code provides the support functions needed by
inspect-with to handle the circular format.

;;; Functions for inspecting points in circular format.
;;; They do not check that the values installed
;;; are non-complex.

ALLEGRO CL for Windows: Programming Tools 4 - 27

Inspector

;;; The slot name function returns “Identity”, “R”,
;;; “Theta” and nil. nil indicates that the last slot
;;; has been reached. This is the only function which
;;; has to be able to handle out-of-range values of the
;;; slot index.

(defun inspect-circular-slot-name-fn (point index)
(aref ’#("Identity" "R" "Theta" nil) index))

;;; The slot value function returns the ID field
;;; unchanged, but converts the internal Cartesian
;;; representation to R-Theta form.
;;; The value function simply returns the value of
;;; the first slot, but calculates the "R" and "Theta"
;;; slot values from the x and y coordinates.

(defun inspect-circular-value-fn (point index)
(case index

(0 (point-id point))
(1 (point-r point))
(2 (point-theta point))))

;;; The validp function checks values as follows:
;;;
;;; Slot 0 (id) No new values allowed (slot is
;;; read-only).
;;; Slot 1 (R) Positive numbers allowed.
;;; Slot 2 (Theta) Any number allowed (but the
;;; value shown in the Inspector
;;; window is always in the range
;;; -pi to pi).

(defun inspect-circular-validp-fn (point index value)
(and

(not (zerop index))
(numberp value)
(or

(= index 2)

4 - 28 ALLEGRO CL for Windows: Programming Tools

(plusp value))))

;;; The slot setting function. This function is never
;;; called with index = 0 because the ID slot cannot be
;;; set. For the “R” and “Theta” slots, it transforms
;;; back to Cartesian coordinates and updates the x and
;;; y slots. Note that the Inspector calls the
;;; slot-value function when it displays the new values,
;;; so the values of theta shown in the Inspector window
;;; are always in the range (-pi, pi).

(defun inspect-circular-setting-fn (point index value)
(if (= index 1) ; Never called with index = 0

(let ((theta (point-theta point)))
(setf

(point-x point) (* value (cos theta))
(point-y point) (* value (sin theta))))

(let ((r (point-r point)))
(setf (point-x point)

(* r (cos value))
(point-y point) (* r (sin value))))))

;;; The default value for the theta slot is zero, and
;;; for R is 1 (R = 0 is meaningless).

(defun inspect-circular-default-fn (point index)
(if (= index 1) 1 0))

;;; Two support functions. point-r and point-theta
;;; carry out the Cartesian-to-circular transformation.

(defun point-r (point)
(sqrt

(+
(square (point-x point))
(square (point-y point)))))

(defun point-theta (point)
(atan (point-y point) (point-x point)))

ALLEGRO CL for Windows: Programming Tools 4 - 29

Inspector

Finally, a call which inspects apoint object.

(inspect a)

Now try a circular inspection:

(setf *inspect-point-as-circular* t)
(inspect b)

4.6.6 Default window sizes

The default sizes of windows associated with the inspector are controlled by the following
variables and the functionscg:default-window-width and cg:default-
window-height . These methods, specialized for inspector windows, will return the
value of the*inspector-window-width* or *inspector-window-height*
(respectively) if that value is non-nil . If the value isnil (as it is initially for both vari-
ables), then the default methods will return an integer equal to the*inspector-win-
dow-width/height-factor* value multiplied by the interior size of the*lisp-
main-window* .

inspector-window-width [Variable]

Package: inspector

■ The initial value isnil .

inspector-window-height [Variable]

Package: inspector

■ The initial value isnil .

inspector-window-width-factor [Variable]

Package: inspector

■ The initial value is 0.6.

inspector-window-height-factor [Variable]

Package: inspector

■ The initial value is 0.4.

4 - 30 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

ALLEGRO CL for Windows: Programming Tools 5 - 1

Trace, break-
point, profile

Chapter 5 Trace, breakpoint
and profile

No matter how careful a programmer tries to be, the first draft of a new section of code fre-
quently contains bugs. The compiler will detect some errors as the code is read in and these
can easily be corrected and the code recompiled. Other errors, however, will not manifest
themselves until the code is executed. This is particularly true in languages such as Lisp
where the type of an argument is not usually known until runtime. For instance, the code:

(defun foo (x) (car x))

is perfectly correct syntactically, as is:

(defun bar () (foo 1))

and both will be compiled without complaint, but on typing:

(bar)

a runtime error is signaled becausecar is called with a number as its argument rather than
a list.

Incremental testing of new functions (i.e. interactively testing new functions using sam-
ple data soon after they are defined) often serves to isolate the bug to a few lines of code
where subsequent inspection by eye can locate the problem. Unfortunately not all bugs can
be found in this way and when a program fails mysteriously deep within a computation, you
may have little idea of what caused the error.

There are various steps which you can take when faced with this situation. Some pro-
grammers will prefer to use the Debugger (see Chapter 6) to investigate the state of the sys-
tem when the error is signaled. This can be rather a sledgehammer approach but is very
effective when the source of the problem is believed to be close to the function which sig-
naled the error, or when you are desperate for some hint to follow up. It has the drawback

5 - 2 ALLEGRO CL for Windows: Programming Tools

that it may not display the actual cause of the error, since the erroneous function may no
longer be executing. Moreover, the Debugger is of limited use if the bug causes an incorrect
value to be returned rather than signaling an error. Simple inspection of the source code is
usually helpful but may not be sufficient as it provides no information about the flow of
control which led to the error. If this flow of control can be examined, it will often be easy
to spot at which point the program started to behave in an unexpected fashion. One way of
getting such information is to insert calls toprint ordebugger into the code and recom-
pile it. Another way is to use the Trace facility.

5.1 Simple Tracing

To get to grips with the trace package, start up Lisp and define the factorial functionfact
as follows:

(defun fact (n) (if (<= n 1) 1 (* n (fact (1- n)))))

For the non-mathematical, the factorial of a positive whole number is obtained by mul-
tiplying together all the whole numbers between it and 1. Thus, factorial of 5 = 5 x 4 x 3 x
2 x 1 = 120. Our definition offact therefore expects a number as its argument. It is best
to give it a small positive number for this demonstration, but it can handle larger numbers
happily.

Check that(fact 1) returns 1 and(fact 5) returns 120. Try(fact 500) if you
wish.

The Trace dialog
Output from tracing can be voluminous. In the default, it goes to the Toploop window but
if the Trace dialog (illustrated below) is displayed, output goes there. You display the trace
dialog by choosingTrace Dialog from the Trace submenu of the Tools menu.

ALLEGRO CL for Windows: Programming Tools 5 - 3

Trace, break-
point, profile

Starting tracing
Now, type:

(trace fact)

and then:

(fact 5)

The Trace dialog window should look something like this:

5 - 4 ALLEGRO CL for Windows: Programming Tools

Most of this output has come fromtrace and is generated at the time the traced func-
tion is called. The trace information should be fairly self-explanatory in this simple case:
the calls are shown in a call graph (not very interesting in this simple recursive function).
Note that deep recursion may cause the graph to go beyond the edge of its area of the dialog.
We have selected one call (its highlighted) and the argument and returned value of that call
are displayed, as is the stack (in the lower right). Unless you clear the dialog (by clicking
on theClear button), the next call tofact will be combined with the call reported here.

Counter values. There are several other counters maintained by trace, break-
point and profile which are described later in this chapter, but it is worth remem-
bering that redefining a traced (or breakpointed or profiled) function will cause
all the counters to be reset to zero. Try redefiningfact and calling it again to
see this. Notice also thatdefun knows thatfact is traced and keeps it traced.

Trace output. Trace writes to the Trace dialog if it is available. Otherwise, the
output ortrace goes to the stream*trace-output* , which is initially a
synonym stream of*terminal-io* .

Controlling the printer . The special variables*trace-print-level* and
trace-print-length are used to control the printer whiletrace is
printing. These variables appear on the Printer form of the Preferences dialog,
displayed by choosingMain Preferences from the preferences menu.

Infinite recursion. You should be careful if you trace certain system functions.
Tracing those used by the Printer or byformat could potentially cause infinite

ALLEGRO CL for Windows: Programming Tools 5 - 5

Trace, break-
point, profile

recursive calls to be performed when Lisp tried to print the trace information. In
fact, Lisp avoids this by setting a flag to prevent the recursion, but consequently
not all calls to the traced function will actually be traced. If you think you may
have entered an infinite loop, try to break out by pressing the Break key (some-
times labeled ‘Break Pause’).

Removing tracing
You can remove tracing fromfact by typing:

(untrace fact)

or simply:

(untrace)

which untraces everything currently traced.

5.2 Conditional Tracing

If you suspect that a function is failing only occasionally, say for a particular set of argu-
ments, you can cause trace information to be printed only when given those arguments.
Likewise, you may just want to see what the function returns in a particular situation.
trace allows a conditional test to be performed on each call of a traced function and will
only print trace information for that particular call if the result of the test is notnil .

The conditional test may be any Lisp expression but to help you Lisp makes three values
available to the expression by binding local variables. The current call number is bound to
the variablecall-count , the current call depth tocall-depth and a list of the current
arguments toargs . Try experimenting with this by definingfact and then typing:

(trace (fact (= call-depth 3)))

Be careful to get the parentheses right. Then:

(fact 5)

causes the trace information to be printed only when exactly three calls offact are in
progress. Executing:

(fact 5)

5 - 6 ALLEGRO CL for Windows: Programming Tools

a second time produces similar output, but the call count has changed. Now enter:

(trace (fact (= call-count 2)))

Retracing a traced function causes the tracing counters for that function to be reset to
zero. In particular, the call counter is now zero, so:

(fact 5)

causes information to be printed for the second call, but executing:

(fact 5)

again displays no information as the call counter runs from 6 to 10 during the calculation,
so the test always fails.

Printing additional information . You can put calls toprint andformat in
the conditional expressions to get more information out.

Default conditionals. (trace fact) is precisely equivalent to(trace
(fact t)) ; that is, tracingfact with a conditional which always succeeds.

5.3 Tracing Lots of Things

You may have wondered why a set of parentheses was required aroundfact and its con-
ditional test when the test was specified. This is because a single call totrace can trace
more than one thing. If you have three functions calledfoo , bar andbaz each of which
takes two arguments, then you can trace them all, with various conditionals, by typing:

(trace (foo (= call-count 29))
bar
(baz (and (= call-depth 3)

(eq (first args) ’hello)))
)

foo andbaz have conditionals and every call tobar is traced. The same effect can be
achieved more verbosely by:

(trace (foo (= call-count 29)))
(trace bar)
(trace (baz (and (= call-depth 3)

(eq (first args) ’hello))))

ALLEGRO CL for Windows: Programming Tools 5 - 7

Trace, break-
point, profile

You can find out which functions are currently traced just by typing(trace) . If you
have been following the examples so far, Lisp will respond:

(foo bar baz)

5.4 Tracing Places

What you have seen so far is fine for tracing functions defined bydefun , or installed by
set-symbol-function .

Installing new symbol functions. You should not useset-symbol-
function on a symbol whose function definition is being traced, because only
defun knows about tracing.

Suppose you want to trace calls to an object which is stored somewhere else, such as in
an array or on the property list of a symbol. Functions are often stored in such places to
allow data-driven programming. As a rather artificial example, suppose that in part of a pro-
gram you want to call a function on argumentsarg1 andarg2 depending on the value of
arg0 , which you expect to be an integer in the range 0 to n. You have defined an array
calledfunc-array containing (n+1) elements, each of which is the function we want to
call for that value ofarg0 . Quite reasonably, you call the appropriate function by typing:

(funcall (aref func-array arg0) arg1 arg2)

You then discover problems when you call the function in slot 5 of the array, and decide
to trace it.trace is no use, buttracef 1 comes to the rescue.

(tracef (aref func-array 5))

does the job.tracef causes calls to the code stored in any place acceptable tosetf to
be traced. It takes a conditional, which defaults tot , but unliketrace , it can only trace
one thing at a time and so the parentheses around the traced object and its conditional can
be omitted. This restriction is to avoid ambiguity over what should be traced. Thus, you
would write:

(tracef (aref func-array 5) (= call-depth 1))

1. Note that tracef is an extension to Common Lisp. The symbol tracef is in the allegro
package.

5 - 8 ALLEGRO CL for Windows: Programming Tools

to trace top-level calls to the code stored in:

(aref func-array 5)

You might like to try definingfact , then:

(setq func-array
(make-array 1 :element-type t :initial-element ’fact)

(tracef (aref func-array 0))
(funcall (aref func-array 0) 5)

Untracing places. Callinguntracef on a place acceptable tosetf untraces
the place if it has been traced. You can use(untrace) to untrace absolutely
everything, both places and functions.

5.5 Setting Breakpoints

Tracing provides information about a call to a code object and about the values returned by
the call, but the information and control it provides are by no means complete. It does not,
for instance, show where the code object was called from, and it does not give you the
option of aborting the calculation if you see that it is certain to fail because the arguments
are wrong or a function is returning the wrong values. A way is needed of interrupting the
execution of the program just before and just after execution of the code object in question.
This can be done using breakpoints.

A breakpoint is a point where the flow of execution of a program can be interrupted, or
broken. The variables and data structures of the program can be examined and perhaps
modified before resuming execution of the program. You can try setting breakpoints in
fact . First type(untrace) to untrace everything from the previous examples, then
definefact and type:

(breakpoint (fact (= call-depth 3))) (fact 5)

Lisp displays a Restarts dialog when the breakpoint is reached:

ALLEGRO CL for Windows: Programming Tools 5 - 9

Trace, break-
point, profile

Click Invoke Selected Restart while thereturn from break restart is selected
and shortly you will see a second Restarts dialog:

Invoke thereturn from break restart again and the result 120 will be printed by
the Toploop as usual.

The first dialog box was displayed just before starting the third recursive call tofact ,
while the second was displayed just after the result of that call had been obtained. At either
time, clickingEnter Debugger would enter the Lisp Debugger (and clickingAbort would
abort thefact computation altogether).breakpoint is very like trace in that many
functions can be breakpointed using a single call tobreakpoint , with or without condi-
tional tests involving their call count, call depth and arguments, using the same syntax as
trace . unbreakpoint is precisely analogous tountrace , andbreakpointf and

5 - 10 ALLEGRO CL for Windows: Programming Tools

unbreakpointf are provided and work liketracef and untracef respectively.
breakpoint keeps its own counters separate from those used bytrace .

With breakpoints still set onfact , type:

(trace (fact (= call-depth 3)))
(fact 5)

You can see that a code object can be traced and breakpointed at the same time and, for
a given call, trace information is displayed before a chance to break is offered. This is so
that the arguments and results can be examined before deciding on a course of action.

5.6 Profiling

Gathering information about the runtime characteristics of a program is called profiling.
You can accumulate timing information about the execution of code objects and display this
information in a tabular format. Such information can show where a program is spending
most of its time and hence which areas of the program could most usefully be speeded up.
To illustrate the data which profiling can provide, define the following function:

(defun foo ()
(for i from 1 to 60000 do

(+ 1 2)))

This is just a loop doing a little work in the middle.

The for loop. If you are not familiar with thefor loop, see the description of
thefor macro in the Online Manual.

The Profile dialog
In the default, profiling output goes to the Toploop window but if the Profile dialog (illus-
trated below) is displayed, output goes there. You display the trace dialog by choosingPro-
file Dialog from the Profile submenu of the Tools menu.

ALLEGRO CL for Windows: Programming Tools 5 - 11

Trace, break-
point, profile

Starting profiling
You can use theprofile macro to examine the performance offoo . The syntax for
profile is just liketrace andbreakpoint , so type:

(profile foo)

and then:

(foo)

When the call completes, the Profile dialog will contain information on the time spent,
number of calls, and supply a call graph.

5 - 12 ALLEGRO CL for Windows: Programming Tools

The graph on the left shows the calls (all called, profiled functions are shown).foo is
somewhat uninteresting because its call structure is simple, so let us look at a slightly more
complicated example.

Recallfact defined in the trace section above and also used in the breakpoint example.
Make sure it is untraced and unbreakpointed:

(untrace fact)
(unbreakpoint fact)

Now definebar , baz , andbuz . Baz andbuz simply callfact but becausefact is
so recursive, if it is profiled, it will clutter up the graph.

(defun baz (n) (fact n))
(defun buz (n) (fact n)
(defun bar (n)
 (let ((a (baz n))
 (b (buz (* n 2)))
(print (/ b a))))

Profile all three functions:

(profile bar baz buz)

and do

(bar 22)

The profile dialog looks like:

One thing that may be a surprise is thatbuz andbaz take a small portion of the total

ALLEGRO CL for Windows: Programming Tools 5 - 13

Trace, break-
point, profile

time. In fact, printing a large number (which work is done bybar) takes much
longer than calculating it.

In the graph, the open folder icons represent intermediate calls (they call something
else) while the page-with-folded-corner icons represent leaves -- that is functions that do
not call other (profiled) functions. You can trim the graph by clicking on the minus (-) box
at the nodes of the graph or lengthen it by clicking on the plus (+) box at a terminal node
(unless the terminal node is a leaf). Further calls to profiled functions accumulate on the
graph until theClear button is clicked, which clears the profile record and the dialog.

Getting results without the Profile dialog
If the Profile dialog is not displayed, profile results (without the call graph and with less
data) can be displayed with the macro profile-results or by choosingProfile Results from
the profile submenu of the Tools menu. The same call tofoo produces the following output
on the Toploop window:

Function Profile count Total time Average Max Min
FOO 1 3.08 3.08 3.08 3.08

• Function names the function being profiles (foo in this case).

• Profile count is the number of times that the conditional test associated
with profiling foo returned a non-nil result. In the example, the test was
omitted and so defaulted tot , which means that the profile count is the same as
the number of timesfoo has been called since last being profiled or redefined.

• Total time displays the total time spent infoo while the timer was running.
Every timefoo is called when the condition was non-nil , a timer is started and
runs until foo returns from the call. The sum of these times (in seconds) is
displayed in theTotal time .

• Average is theTotal time divided theProfile count (sinceProfile
count is 1,Average is the same asTotal Time .

• Max is the time of the longest run. Since there was only one run, it is the same
asTotal time .

• Min is the time of the shortest run. Since there was only one run, it is the same
asTotal time .

Try runningfoo a few more times and examining the results again. You may see some
slight variation in the maximum and minimum times. This is due to the fact that the timer

5 - 14 ALLEGRO CL for Windows: Programming Tools

counts in distinct ‘ticks’, rather than running continuously, so results are rounded to the
nearest tick. Also, other activity within the computer, such as interrupts occurring, can
increase the execution time.

Garbage collection. The time taken for garbage collection is not subtracted
from the execution time of a function in which it occurs, so you should be careful
of this when using the profiler.

Profiling overheads
A further warning must be given: there is some overhead associated with running the pro-
filer. Enter:

(unprofile)

just in case something is still profiled, then:

(defun foo ()
(for i from 1 to 30000 do

(bar)))
(defun bar ()

(for i from 1 to 2 do
(+ 1 2)))

(profile foo)
(foo)
(profile-results)

(profile-results) on its own prints accumulated information about all profiled
functions and places (in case you had not guessed by now, you can profile and unprofile
places usingprofilef andunprofilef in exactly the same way as tracing them). The
Toploop window should look like this:

ALLEGRO CL for Windows: Programming Tools 5 - 15

Trace, break-
point, profile

Now type:

(profile-reset foo)

to clear the profile information aboutfoo , then:

(profile bar)
(foo)
(profile-results)

5 - 16 ALLEGRO CL for Windows: Programming Tools

Again, it may be hard to read the information in the illustrations. They say that calling
foo once whilebar is not being profiled takes about 1.04 seconds while calling it while
bar is also profiled takes about 10.11 seconds!1.

Profiling the right thing
If you definefact as before and then enter:

(profile fact)
(fact 5)

what you will have timed is:

<the time for (fact 5)> +
<the time for (fact 4)> +
<the time for (fact 3)> +
<the time for (fact 2)> +
<the time for (fact 1)>

when what you probably wanted was:

<the time for (fact 5)>

because a new timer is started for each profiled call tofact . You can restrict the profiling
by using:

(profile (fact (= call-depth 1)))

which only times the outermost call.

5.7 Menu Commands

TheTrace, Breakpoint, andProfile are all choices on the Tools menu. Each displays an
associated submenu which provides a convenient way of enabling or disabling the tracing,
breakpointing or profiling of a selected symbol without a conditional. Using this command
can save a lot of unnecessary typing.

1. Note that timings depend on machine configuration, loading, and processor clockrate.
You may get very different actual times. However, you will see an increase in the time it
takes foo to be executed when bar is profiled regardless of your machine configuration.

ALLEGRO CL for Windows: Programming Tools 5 - 17

Trace, break-
point, profile

To use any of the submenus, simply select the symbol and then the operation to be per-
formed on it. If you select something other than a symbol, the first symbol within the selec-
tion will be used.

TheStatus entries print information to the status bar about what is being traced, break-
pointed, or profiled.

Many of the menu items can be chosen with buttons on the toolbar. The Break items
show a hammer, the trace items a zig-zag, and the profile items (not on the toolbar by
default) show a human profile. To see exactly what button does what, move the mouse cur-
sor over the button and look in the status bar.

5 - 18 ALLEGRO CL for Windows: Programming Tools

5.8 Trace, breakpoint, and profiling internals

This section was chapter 6 of theInside Programming Tools manual in release 2.0.

5.8.1 Tracing functions and places

Calls to a function can be traced, telling the user how many calls have been made to the
function, the depth of recursion and the arguments with which the function was called.
Additionally, Allegro CL for Windows also allows the user to trace functions insetf able
places.

trace-print-level [Variable]

Package: allegro

■ controls the maximum depth to which arguments and results of traced
functions are printed by the trace subsystem. Its initial value is 4.

trace-print-length [Variable]

Package: allegro

■ controls the maximum length to which arguments and results of traced
functions are printed by the trace subsystem. Its initial value is 10.

trace [Macro]

Arguments: {function-description}*

Package: common-lisp

■ traces the functions and macros provided. If nofunction-descrip-
tions are provided, all traced functions and places are displayed.
☞ In Common- Lisp,trace ’s arguments may only be symbols which name
the functions or macros to be traced. In Allegro CL for Windows eachfunc-
tion-description is either a symbol or a list of a symbol and a test-form,
which may be any Lisp expression. The test-form is evaluated each time the
traced function or macro is called, and determines whether trace information
should be displayed for that particular call. During execution of the form, the
following variables are bound appropriately:

ALLEGRO CL for Windows: Programming Tools 5 - 19

Trace, break-
point, profile

• call-count - the number of calls to this function since it was made
traceable.

• call-depth - the current depth of recursive calls to the function.

• args - list of the arguments of the particular call.

For example, to cause trace information to be displayed for functionfoo
when it is called for the 17th time,

(trace (foo (= call-count 17)))

could be used.test-form may be an arbitrary expression, and permits trac-
ing to be very specific. In the following example,foo ’s first argument is
printed when*my-count* is greater than 100, and all othertrace output
is suppressed by returningnil .

(trace (foo

(if (> *my-count* 1000)

(progn (print (first (args))) nil)))))

■ trace, breakpoint andprofile count calls separately.

tracef [Macro]

Arguments: place [test-form]

Package: allegro

■ traces calls to the function stored inplace . Trace information will only
be displayed iftest-form returns a non-nil value.test-form defaults
to t .

untrace [Macro]

Arguments: {function}*

Package: common-lisp

■ untraces function. If none is given, all traced functions and places are
untraced.
☞ In standard Common Lisp,untrace only affects traced functions.

untracef [Macro]

Arguments: place

Package: allegro

5 - 20 ALLEGRO CL for Windows: Programming Tools

■ untraces the function stored inplace . This macro has no effect ifplace
is not already traced.place should be untraced before a new function is
stored into it.

5.8.2 Setting breakpoints

Breakpoints can be introduced to a section of code so that the program stops running when
these points are reached. This is helpful if, for some reason, the code is not being executed
properly, and the user wishes to check whether or not individual sections are running as
they should. If a section of code is terminated with a breakpoint and the code is executed
correctly up to this point, then the user knows that this section is not causing the problem.

breakpoint [Macro]

Arguments: {function-description}*

Package: allegro

■ sets breakpoints on the given functions, causing a call tobreak before
and after the given function call.function-description behaves in the
same way as fortrace .

breakpointf [Macro]

Arguments: place [test-form]

Package: allegro

■ sets a breakpoint atplace , causing a call tobreak before and after a call
to the function stored atplace .

unbreakpoint [Macro]

Arguments: {function}*

Package: allegro

■ removes the breakpoints from the functions given. If none are given, all
breakpointed functions and places are unbroken.

unbreakpointf [Macro]

Arguments: place

Package: allegro

ALLEGRO CL for Windows: Programming Tools 5 - 21

Trace, break-
point, profile

■ removes the breakpoint fromplace . This should be done before a new
function is stored inplace .

5.8.3 Profiling functions and places

Timing information can be obtained for sections of a program. If a program is taking longer
than expected to run, or it is suspected to have a bug, examination of the times taken for the
execution of different sections might reveal those sections of code which are not time-effi-
cient. These sections can be examined for possible improvements. Profiling information
can be obtained both for function calls and for places.

Often it is useful to accumulate profiling information on only the first call of a recursive
function, such as the factorial function.

(profile (factorial (= call-depth 1)))

before

(factorial 4)

causes timing information for the evaluation of 4! to be accumulated, while:

(profile factorial)

would cumulatively accumulate the times for evaluation of 4!, 3!, 2! and 1!.

profile [Macro]

Arguments: {function-description}*

Package: allegro

■ profiles the given functions.function-description behaves in the
same way as fortrace . If the functions are traced or breakpointed, ortest-
form is too complicated, inaccurate timings will be produced.

profilef [Macro]

Arguments: place [test-form]

Package: allegro

■ profiles the given place. Ifplace is traced or breakpointed, ortest-
form is too complicated, inaccurate timings will be produced.

5 - 22 ALLEGRO CL for Windows: Programming Tools

unprofile [Macro]

Arguments: {function}*

Package: allegro

■ removes profiling from the givenfunction . If no functions are
given, all functions and places are unprofiled.

unprofilef [Macro]

Arguments: place

Package: allegro

■ removes profiling from the givenplace .

profile-reset [Macro]

Arguments: {function}*

Package: allegro

■ resets profile data on the givenfunction . If none are provided, all pro-
file information is reset.

profilef-reset [Macro]

Arguments: place

Package: allegro

■ resets profile data on the function stored at the givenplace .

profile-results [Macro]

Arguments: {function}*

Package: allegro

■ prints to *trace-output * the accumulated profiling data on the
function , if provided. If not, data on all the profiled functions and places is
printed.

profilef-results [Macro]

Arguments: place

Package: allegro

■ prints to*trace-output* the accumulated data on the givenplace .

ALLEGRO CL for Windows: Programming Tools 6 - 1

D
ebugger

Chapter 6 The debugger

The name Debugger is somewhat misleading, as it is a tool which helps you to find bugs,
not one which fixes them. The Debugger allows you to examine and modify the current
state of the Lisp session, normally after an error has occurred.

When Lisp is started up it is allocated an area of memory in the computer. It divides this
area into two main parts, called the heap and the stack. The heap is commonly referred to
as the Lisp workspace and will not be discussed further here. The stack is used during the
execution of functions to hold control information and transient data. Many books on pro-
gramming techniques describe the general principles of stacks, their uses and the operations
which may be performed on them, so knowledge of this will be assumed throughout the rest
of this chapter, which will focus on the Lisp stack and its relation to Lisp code.

6.1 Stack Frames

In most high-level languages, such as Lisp, programs written in a modular way use many
separate functions (or procedures) which call each other while the program is executing. At
the machine level, the function call mechanism is usually implemented using a stack based
approach, which reflects the flow of execution through the program. For instance, if func-
tion A calls functionB then functionB will finish execution before functionA. This is con-
veniently implemented by putting the control and data forA on a stack, that forB on top of
it whenB is called and unstacking it whenB terminates. The control information forB con-
sists of miscellaneous values required to perform the exit fromB (such as the return address
into A), while the data is comprised of the values of variables occurring in the Lisp code
and anonymous results waiting to be used as part of a computation. Together they are called
the stack frame (or activation record) for the particular call toB. The Allegro CL Debugger
allows you access to these stack frames and their contents.

6 - 2 ALLEGRO CL for Windows: Programming Tools

6.2 Looking at the Stack

To illustrate the Debugger in action, define the following functions:

(defun foo (n j)
(let ((flag (is-ok n)))

(if flag (foo (1- n)
(* n j)) (bar j))))

(defun is-ok (x) (> x 1))
(defun bar (j) j)

Convince yourself that(foo n 1) computes the factorial of n. Now type:

(defun bar (j) (error "hi there"))

to redefinebar and call:

(foo 3 1)

Lisp displays a Restarts dialog box to inform you that an error has occurred (because of the
explicit call toerror) and to display the available restarts:

What are restarts?
Allegro CL for Windows 3.0 implements the Common Lisp condition system (see the entry
Errors and the Condition System under Lisp Contents in the Online Manual). Conditions
(which includes warnings and errors and other things) are signaled and handled by handlers
provided by the program or the system. The handler provided by the system for errors dis-

ALLEGRO CL for Windows: Programming Tools 6 - 3

D
ebugger

plays a restarts dialog. The user can choose among the various restarts and invoke the one
chosen. There are only two restarts in this example, as the illustration of the dialog shows.
The user can abort to the Top Level (canceling whatever was being done when the error
happened) or enter the debugger. These restarts are almost always available and for that rea-
son buttons equivalent to those restarts are also invoked with theAbort andEnter Debug-
ger buttons.

What condition is signaled?
Errors as classified according to the condition that was signaled when the error happened.
The simplest (and least informative) condition issimple-error . A call toerror with
a string as its first argument (rather than a condition object) as is done by our functionbar
will be asimple-error . Many errors in Allegro CL are classified with conditions more
specific thansimple-error but many remain unclassified. If the condition is other than
simple-error , it is shown in the Restarts dialog. (For example,(open "foo") when
there is no file calledfoo signals an error of conditionstream-error .) See the descrip-
tion of the condition system and the functionerror in the Online Manual for more infor-
mation. We do not discuss conditions further in this chapter.

Back to debugging this error
Click theEnter Debugger button or invoke the Enter Debugger restart. A backtrace win-
dow similar to the following is displayed:

6 - 4 ALLEGRO CL for Windows: Programming Tools

The window title shows the number of active Debuggers (the Debugger can be called
recursively). The list on the left contains the stack frames currently active in the Lisp ses-
sion. The list has one entry for each stack frame, with the most recent frames at the top. The
wordFrame near the top right would identify the number of the selected frame if any frame
is selected. Since no frame is selected in the illustration, no number appears.

The buttons on the right identify choices that will be discussed below. Buttons naming
unavailable choices are masked and are thus hard to read. The five buttons are, from top to
bottom:More, Open, Return, Restarts, andAbort . (Return has no effect in this release
of Allegro CL.) The first letter of each is underlined, indicating that pressing the Alt key
and that letter is the same as clicking on the button.

The error message associated with the signaled error is shown near the bottom. The con-
dition signaled is also identified unless it issimple-error (as it is in this case).

There are several different kinds of frame which are labelled in descriptive ways. When
Lisp knows the name of the called function belonging to a particular stack frame it uses that
name to label the frame. It has done this for the functionsdebugger anderror . foo and
bar appear further down and so are not visible in the window.

Seeing more of the stack
There may be many stack frames on the stack, and putting all of these in the scrolling dialog
box can be time-consuming, so Lisp initially only fetches some of the frames. ClickMore
and (after a pause while Lisp reads more frames) the window is redisplayed. The unhidden
frames are mostly system frames. (More has already been clicked in the illustration above).

Entries like#<function 0 #xB99914> (near the top of the illustration above) indi-
cates a call to a code object which was not on thesymbol-function of a symbol. This
corresponds to a frame created byfuncall or apply . The#xB99914 is the address.
You will see something different from what is displayed in our picture.

Scroll down the dialog box and then click on the final occurrence offoo just below the
BAR.

This causes theOpen button to become active and sets the frame number (to 8). Note
that we have clicked onMore already so that button is inactive. (There is no way to show
fewer frames.)

Frame numbers. Frame numbers are useful for keeping track of where you are.
They start from 0 at the top of the stack.

ALLEGRO CL for Windows: Programming Tools 6 - 5

D
ebugger

Copy in the Edit menu is defined to behave in a useful way inside the Debugger
window. If you select a frame labelled with a function symbol or a function
object,Copy will copy the symbol to the Clipboard.Copy does nothing if any
other kind of frame is selected.

Looking at a stack frame
Double-click onfoo or clickOpen to open up the frame and see what is inside it. A small
window is displayed (which you may wish to enlarge) showing the contents of the frame.
We have enlarged the window slightly for the illustration.

The name of each argument to the function is given, along with its value. If Lisp does
not know the name of an argument, it will label it with a number instead. Other values
within the frame will also be displayed, labelled with numbers. In this case, there is one
other value,t , which corresponds toflag in the definition offoo .

If a function binds special variables, their previous values will be saved on the stack.
Double-click thedebugger frame to see an example of this:

6 - 6 ALLEGRO CL for Windows: Programming Tools

This method of binding and unbinding special variables is known as shallow binding. A
symbol which is a special variable is bound to a valueV by saving its old symbol-value on
the stack and then setting its symbol-value toV.

Copying and changing local variable values. Copy andPaste work on local
variables in stack frames.Copy copies the value of the variable;Paste changes
the variable’s value.

Double-clicking on a local variable allows you to inspect the variable’s value.
You can then use the Inspector to examine and change any data structure to
which a local variable is bound. Note the Return Selected Value choice in the
right-button menu. It will return the object in the Toploop window (thus making
it the value of* and allowing you to get a handle on it).

Describing argument values. You can also useDescribe in the Help menu on
the selection to print information about it in the Help window. The selection is
first moved to the Clipboard usingCopy, then the top Clipboard item is popped
and passed toDescribe.

6.3 Exiting From The Debugger

There are several ways of exiting from the Debugger.

Aborting from the Debugger
It is always possible to clickAbort in the active Debugger window, or close the window
by choosingClose from the File menu. Both have the same effect. The Debugger calls
unwind-stack with reasonerror to unwind the stack. This behavior is the same as
clicking Abort in the error dialog box.

Unwinding the stack. This means removing function calls from the stack in a
way which maintains the logical consistency of the system. A function exiting
normally to its caller is one example of the stack being unwound.

Selecting a restart from the Debugger
The Restarts button is always active and, if clicked on, brings up the Restarts window
again (it is slightly modified since the Enter Debugger restart displays the current backtrace
window, not a new one). The same restarts will be available as when the Restarts window
originally appeared.

ALLEGRO CL for Windows: Programming Tools 6 - 7

D
ebugger

Returning values
Returning values from a stack frame is not supported in this release of Allegro CL for Win-
dows. TheReturn button on the Debugger window is, therefore, never enabled.

Other notes
Kernel errors. Kernel functions signal errors by calling the functionsys-
error . If sys-error ever exits back to the kernel function, the stack will be
unwound as thoughAbort had been clicked in the error dialog box.

Technical note. In your programs, you can exit from the Debugger by executing
a throw orunwind-stack to a destination below the Debugger on the stack.
This causes the stack frames of the Debugger itself to be unwound. As the stack
unwinds, the Debugger will restore its entry context using anunwind-
protect form and then resume the unwinding process. The effect of this is to
achieve a clean exit, which is usually what was wanted.

6.4 Other Ways Of Entering The Debugger

The Debugger is started by calling the functiondebugger with no arguments. You can do
this explicitly in your programs. Lisp has several built-in functions and macros which allow
your programs to signal errors in a controlled way. Errors can also be signaled by system
functions and as a result of you interrupting Lisp.

Interrupting a program
If you think your program is failing, you can interrupt it by pressing the Break (sometimes
labeled Break and Pause). You may need to hold the key down for a short time. Lisp will
signal a non-continuable error from which you can enter the Debugger and examine the
stack. This facility is very useful for when your program gets stuck in a loop.

Recursive Debugger calls
The Debugger may be invoked recursively, for instance, from an error occurring while the
Debugger is already running. If this happens, Lisp creates a new Debugger window and
hides the previous one. This forces you to exit from the most recent Debugger first. The
previous Debugger will not attempt to restore its entry context before the new Debugger is
invoked. On exit from the new Debugger, the old Debugger window appears again.

6 - 8 ALLEGRO CL for Windows: Programming Tools

6.5 Debugger Preferences

There is no choice for Debugger on the Preferences menu.

The Printer preferences include*trace-print-level* and *trace-print-
length* which are used to control output from thebacktrace function, and also out-
put from the Trace utility.

Backtracing. Thebacktrace function uses the same rules for suppressing
frames. When called it prints a description of the current state of the Lisp stack
to the stream*debug-io* , which is initially a synonym stream of
terminal-io .

6.6 Debugger Reference

Stack frame labels
Within the backtrace window you may see frames labelled in a variety of ways. The mean-
ings of these labels are given in the following table:

FOO (or similar) An executing call to the Lisp function of the
same name.

#<function...> An executing call to a Lisp function made by
funcall , apply etc.

#<closure...> An executing call to a closure made by
funcall , apply etc.

open FOO (or similar) A call to the Lisp function of the same name
which has not yet had all its arguments eval-
uated.

open #<function...> A call to a function which has not yet had all
its arguments evaluated.

ALLEGRO CL for Windows: Programming Tools 6 - 9

D
ebugger

Controlling the Debugger
Here are the effects of the buttons in a Debugger window.

Closing a Debugger window is equivalent to clickingAbort .

open #<closure...> A call to a closure which has not yet had all
its arguments evaluated.

catch tag A catch frame with tagtag .

More fetches more frames from the
stack (no undo).

Open opens a window showing the
contents of the selected frame.

Return returns values from the selected
frame (not supported in this
release of Allegro CL).

Restarts redisplays the restarts window
(allowing invocation of available
restarts).

Abort unwinds the stack with reason
error

6 - 10 ALLEGRO CL for Windows: Programming Tools

6.7 Debugger internals

This section was chapter 7 of theInside Programming Tools manual in release 2.0.

Debugging facilities are available from the Toploop and via a Lisp function interface.
The Lisp stack is divided into frames, corresponding to invocations of Lisp constructs such
as lambda expressions and function calls. The convention used throughout is that the top of
the stack is the most recent frame. It is possible to exclude sequences of functions or pack-
ages from the action of the Debugger, and to vary the volume of output produced.

6.7.1 Debugger external functions

debugger [Function]

Arguments: &optional continuable-p t

Package: allegro

■ enters the debugger. No values are returned, and the function may not
always return. Ifcontinuable -p is nil , the function will not return, but
will exit using an(unwind-stack nil ’error nil) .

backtrace [Function]

Arguments: &key (:frame-count 10000) (:style :locals)

Package: allegro

■ prints the topn frames of the stack to the stream*debug-io* . If n is
omitted or isnil , the whole stack is printed.style can take one of three val-
ues:

• :fns if only functions are to be printed

• :args if both functions and arguments are to be printed

• :locals if both functions and arguments are to be printed, along with
locals.

ALLEGRO CL for Windows: Programming Tools 6 - 11

D
ebugger

6.7.2 Default window sizes

The first four variables control the size of the debugger windows that pop up on the right
edge of a backtrace window, to show the arguments to a function call.

variable-browser-min-width [Variable]

Package: debugger

■ The initial value is 100.

variable-browser-max-width [Variable]

Package: debugger

■ The initial value is 200.

variable-browser-min-height [Variable]

Package: debugger

■ The initial value is 100.

variable-browser-offset [Variable]

Package: debugger

■ The initial value is 11. This variable controls the vertical distance between
the tops of successive windows.

The next four variables control the size and position of backtrace windows. Multiple
browsers will be placed one on top of another. If you move a browser window, these vari-
ables will be reset to correspond to the new location so the next browser will come up there.
The left and top coordinates are 50 andnil initially, meaning place in lower left, above
the status bar if it is present, 50 pixels from left edge.

stack-browser-window-left [Variable]

Package: debugger

■ Initial value 50. The value of this variable is changed if a browser is moved
by the user (with, e.g. the mouse) to reflect the new position.

6 - 12 ALLEGRO CL for Windows: Programming Tools

stack-browser-window-top [Variable]

Package: debugger

■ Initial valuenil , which (new in release 3.0) means place the window near
lower left of *lisp-main-window* . nil allows the system to take the
presence or absence of the status bar into account when placing the browser so
that no portion of the browser is obscured by the status bar. The value of this
variable is changed if a browser is moved by the user (with, e.g. the mouse) to
reflect the new position.

stack-browser-window-width [Variable]

Package: debugger

■ Initial value 352.

stack-browser-window-height [Variable]

Package: debugger

■ Initial value 286.

ALLEGRO CL for Windows: Programming Tools 7 - 1

S
tepper,

w
atcher

Chapter 7 The stepper and
the watch facility

Using the Stepper, you can single step the evaluation of any Lisp form. This can be useful
to find the source of an error when the other debugging tools such as Trace and Breakpoint
have not produced any helpful information. The Stepper works by augmenting the source
code used by the compiler - it does not use an interpreter.

The Watch facility allows you to make Lisp print the value stored in anysetf able place
every time the Toploop prints its prompt. The values being watched are displayed in a spe-
cial window.

7.1 The Stepper

Stepping a form
To step a form, you use the macrostep . For example, click on the Toploop window and
type:

(step (+ 5 (+ 3 4 6)))

Press Enter. Lisp displays the Step Control window:

7 - 2 ALLEGRO CL for Windows: Programming Tools

The Step Control window, which we also call the Stepper window (from its title), con-
tains buttons which allow you to control the single stepping of the form displayed in the
Stepper window. The second line in the Stepper window shows the subexpression about to
be evaluated and its level of nesting in the whole expression.

Simple stepping
Click Step in the Step Control window to single step the evaluation of(+ 5 (+ 3 4
6)) . Lisp displays the lexical level (nesting) and the subexpression it is about to evaluate:

ALLEGRO CL for Windows: Programming Tools 7 - 3

S
tepper,

w
atcher

Click Step again and Lisp displays the result of evaluating that subexpression.

You can clickStep repeatedly to carry on stepping through the evaluation of(+ 5 (+
3 4 6)) .

7 - 4 ALLEGRO CL for Windows: Programming Tools

Skipping to the end
You can quickly skip to the end of the evaluation of a stepped form by clickingFinish in
the Step Control window. For example, clickAbort in the Stepper window, then enter, in
the TopLoop window:

(step (+ 5 (+ 3 4 6)))

and clickStep twice, then clickFinish. Lisp displays the result returned by the whole form:

Click Step again and the stepping operation is completed, returning control to the
Toploop again.

Finish does not end stepping. Clicking Finish does not complete the stepping
operation. This allows you to enter the Debugger just before the stepped expres-
sion returns. This is useful when you are using Step other than as a top-level
form.

Aborting stepping. You can abort stepping of a form at any time by clicking
Abort in the Step Control window. Control is immediately returned to the
Toploop.

The Stepper window. The Stepper window is not closed when the stepping
operation is completed. You can print the Stepper window or save it to disk. The

ALLEGRO CL for Windows: Programming Tools 7 - 5

S
tepper,

w
atcher

Stepper is a Text Edit window so you can type to it. Note however, you cannot
modify text to be evaluated while stepping and type in text to be evaluated.

The Toploop window while stepping
While you are stepping, the form containing step that you typed to the Toploop window is
still being evaluated. Therefore, you cannot type anything further to the Toploop window
until stepping is completed. You can always quit stepping by clicking on theAbort button.

Skipping subexpressions
UsingForward , you can evaluate a subexpression without having to step through all the
expressions it contains. For example, if necessary, clickAbort in the Stepper window and
enter(step (+ 5 (+ 3 4 6))) and click Step three times. Lisp displays the form it
is about to evaluate:

Now clickForward . Lisp displays the result returned by(+ 3 4 6) without stepping
through all the subforms in it. (To see the difference, try clickingStep instead ofForward
in the example above).

You can also skip forward to the end of any layer of subexpression nesting. As an illus-
tration of this, click Abort in the Stepper window, then enter, in the TopLoop window,
(step (+ 5 (+ 3 4 6))) and clickStep five times. Lisp displays the result returned
by evaluating 3, which is nested two levels deep in the stepped form:

7 - 6 ALLEGRO CL for Windows: Programming Tools

Now click on the line containing1: (+ 3 4 6) in the Stepper window and click
Forward in the Step Control window. Lisp displays the result returned by evaluating the
subexpression(+ 3 4 6) without any further stepping of the subexpressions within it:

Click Step again and stepping continues from the end of the evaluation of(+ 3 4 6) .

Selective stepping. Using a combination ofForward andStep, you can achieve
a very high degree of control when stepping a form.

ALLEGRO CL for Windows: Programming Tools 7 - 7

S
tepper,

w
atcher

Entering the Debugger
You can enter the Debugger any time during the stepping of a form by clickingDebug in
the Step Control window. This can be useful to find out from where a stepped function has
been called. You can exit from the Debugger and continue stepping by clicking Continue
in the Debugger window. ClickingAbort in the Debugger window aborts the stepping
operation.

Saving the Stepper Output
The Stepper window can be saved to disk by choosingSave from the File menu.

7.2 Using step other than at the Top Level

step can be used anywhere within a Lisp program, not just as a top-level form. For exam-
ple, you can define a function as:

(defun foo (x) (step (+ 5 (+ 3 4 x))))

and the Stepper is only invoked when foo is called, not when it is compiled.

Fine control over stepping. Usingstep in this way, you can step only the parts
of your code that you need to, and restrict the need for stepping to a minimum.

Shortcut. In the Structure Editor, you can easily insert a call tostep around the
selected structure by choosingBreak At... from the Tools menu and then click-
ing Step on the submenu that is displayed.

Stepping recursive functions
You can step within recursive functions, and each recursive call will be stepped. For exam-
ple, definefact as:

(defun fact (n) (if (<= n 1) 1 (step (* n (fact (1- n))))))

Now type(fact 3) . Lisp displays the Stepper window and the Stepper window. Click
Step to step through the expression(* x (fact (1- x))) . After you have clicked
Step eight times, Lisp displays a message to show thatstep has been called again in the
recursive call tofact :

7 - 8 ALLEGRO CL for Windows: Programming Tools

Finding out where step has been called from
You can use theDebug button in the Stepper window to invoke the Debugger to see where
step has been called from.

Skipping over recursive calls to step
Clicking Forward skips over recursive calls tostep in subexpressions.

7.3 Watching Places

Lisp allows you to monitor the value stored in anysetf able place.

Starting watching a place
Click in the Toploop window and type:

(watch *print-length*)

ALLEGRO CL for Windows: Programming Tools 7 - 9

S
tepper,

w
atcher

Lisp displays a new window titled Watch showing the value stored in the place, which
in this case is the symbol-value of the symbol*print-length* .

Now type:

(setq *print-length* 3)

and Lisp updates the value of the place displayed in the Watch window. Lisp will carry on
updating the Watch window every time the Toploop prompt is printed.

Shortcut. You can set up watching several places at once by giving more than
one argument towatch .

Finding out which places are being watched. You can get a list of all the places
currently being watched by typing(watch) .

The Watch window. You can print the Watch window or save it to disk, just like
any other Text Editor window.

Stopping watching a place
You can use the macrounwatch to stop a place being watched. Click in the Toploop win-
dow and type:

(unwatch *print-length*)

to switch off watching of that place.

Shortcut. You can unwatch several places at once by giving more than one argu-
ment tounwatch . You can unwatch all watched places in one go by typing
(unwatch) .

7 - 10 ALLEGRO CL for Windows: Programming Tools

Technical note. You can update the Watch window from your programs using
the functionallegro:watch-print , which takes no arguments.

ALLEGRO CL for Windows: Programming Tools 8 - 1

C
LO

S
 tools

Chapter 8 CLOS tools

Allegro CL for Windows provides several tools for examining CLOS objects. There are
four tools available, corresponding to the four items on theCLOS Tools submenu of the
Tools menu.

There are toolbar buttons for the four choices, but they are not on the default toolbar. If
you want them on the toolbar, bring up the toolbar palette and add them.

8 - 2 ALLEGRO CL for Windows: Programming Tools

Browse Class
SelectingBrowse Classfrom the submenu displayed by the CLOS Tools item on the Tools
menu when a symbol naming a class is selected brings up the following non-modal dialog.

The left side displays a graph of superclasses of the class of interest (in this case text-
edit-window, which was selected when we brought up this dialog). The right side is a tab-
control widget with tabs for supers (shows the direct superclass), subs, methods, slots (one
for direct and one for all), and the class precedence list.

In the graph, an open folder means there are subclasses (which may or may not be dis-
played) while a page-with-folded-corner means there are no subclasses. Clicking on the
plus (+) at a graph node displays more of the graph while clicking on a minus (-) displays
less. The right button menu over a selected item in the graph allows further investigation of
the selected class. Note theClass Commands choice, which displays a submenu of class-
related choices. Single clicking on an item in the graph displays more graph.

Look at the status bar
The status bar is often updated as you move the mouse about the Class Outline dialog. You
may wish to increase the number of lines in the status bar to see all the information (choose
Status Bar Number of Lines from the right button menu over the status bar)

ALLEGRO CL for Windows: Programming Tools 8 - 3

C
LO

S
 tools

Graph subclasses and Graph superclasses
You can choose these from theCLOS Tools submenu. They display graphs of the sub- or
super-classes of the class being browsed. We show these graphs in the next illustration. The
superclasses is above.

The items in the graph are mouse sensitive. If you right click over a graph entry, the fol-
lowing menu is displayed:

It provides the usual choices. The menu was displayed over thestream entry, and
stream is the first item. Choosing it displays an inspector window on thestream class.

8 - 4 ALLEGRO CL for Windows: Programming Tools

If you right click over the background of the graph, a menu appears with items Options,
Recompute Graph, and Print Graph (to the printer). Recompute Graph recomputes the
graph so it reflects changes you have made. Options displays this dialog:

The Initial depth box allows you to restrict the graph to a specified number of
levels.nil means no restriction.

Browse Generic function
This too can be chosen from the menu or from the box on the browser dialogs. Choosing it
displays the following dialog:

Edit Class, Edit Method, and Edit Generic Function
These boxes causes the file where the object is defined to be displayed, opening the file to
the definition of interest. (Since we have been browsing system-supplied objects, the sys-
tem would tell us that it cannot find the definitions if we chose these options.

Remove Method
This choice removes the selected method.

ALLEGRO CL for Windows: Programming Tools 9 - 1

C
om

tabs

Chapter 9 Comtabs

Command tables (orcomtabs) provide a way of calling a particular Lisp function automat-
ically when a virtual-key-down event or sequence of events occurs. They are often used in
the implementation of editors to associate Lisp functions with particular key combinations.
A command table is automatically associated with every Lisp edit window you open, and
you can also use comtabs to handle events in any Lisp stream built oncomtab-mixin if
you wish. This often means that you can avoid writing your own event loop function for the
stream.

Comtabs are built up in three steps:

• make-comtab (Section 9.1) is used to build an empty comtab with a defined
inheritance path.

• The comtab functions are defined.

• The event or menu selection bindings are established withset-event-
function (Section 9.2).

9.1 Defining comtabs

It is not usually necessary to define all the commands in a comtab, because the inheritance
mechanism means that you can use definitions from existing tables. The default parent for
new comtabs iscomtab:*default-comtab* which handles only very basic events.
text-edit:*raw-text-edit-comtab* provides some text entry facilities in addi-
tion.

comtab-mixin [Class]

Package: comtab

9 - 2 ALLEGRO CL for Windows: Programming Tools

■ supplies the comtab slot and event function so that streams built with this
mixin can look up functions from virtual-key-down events.

make-comtab [Function]

Arguments: &key (:inherit-from comtab:*default-comtab*)

Package: comtab

■ creates and returns a comtab which inherits from:inherit-from , or
default-comtab if no inheritance is specified.

comtab-p [Function]

Arguments: object

Package: comtab

■ returnst if object is a comtab, otherwise returnsnil .

set-comtab [Function]

Arguments: stream comtab

Package: comtab

■ associates the comtabcomtab with stream and returnscomtab . In the
following example, a new comtab,my-comtab is created and associated with
the text edit window,my-window . my-comtab inherits from*raw-text-
edit-comtab* .

(setq my-window

(open-stream ’te::lisp-editor-window

 lisp-main-window :io

:title "Comtab example window"))

(setq my-comtab

(comtab:make-comtab

 :inherit-from te:*raw-text-edit-comtab*))

(comtab:set-comtab (selected-window my-window) my-comtab)

comtab [Function]

Arguments: stream

Package: comtab

■ returns the comtab associated withstream or nil if there is none.

ALLEGRO CL for Windows: Programming Tools 9 - 3

C
om

tabs

inherit-from [Function]

Arguments: comtab

Package: comtab

■ returns the parent ofcomtab or nil if there is none. This function is
setf able.

illegal-operation [Macro]

Arguments: stream

Package: comtab

■ should be called by a comtab function if an invalid operation is attempted.
illegal-operation beeps and returnsnil .

Function, etc. to display comtab bindings
The following function will generate a table displaying commands available in a specified
set of comtabs.

comtab-report [Function]

Arguments: (&optional (filename "comtabs.txt")
(comtab-names *comtab-names*)
(max-column-width 20)

Package: comtab

■ Generates a table showing all of the editor commands available in some set
of comtabs, with names of the keystrokes that map to these commands.
■ filename should be a string naming a file. The report will be written to
that file.

comtab-names should be a list of symbols whose values are comtabs to
be included in the report. Note that each comtab is given a column, so reporting
on too many will generate a report that is too wide.

max-column-width is the maximum number of text columns any field
of the report may occupy.

comtab-names [Variable]

Package: comtab

9 - 4 ALLEGRO CL for Windows: Programming Tools

■ The default set of comtabs that will be included in the report, if the
comtab-names argument is not passed tocomtab-report . The initial
value is

(te::*host-comtab* te::*emacs-comtab* te::*brief-comtab*)

These are the comtabs for the three editor modes.

9.2 Event functions

set-event-function [Function]

Arguments: comtab events function

Package: comtab

■ adds a command tocomtab for handlingevents , which may be either
a single event or a list of events. Event processing is described in detail in the
Common Graphics section on the Online Manual. If more than one event is
given,function will be called if they occur sequentially, separated only by
null events.function must take one argument, the stream in which the
comtab event occurred. The special variables*event-number* ,
button-state , *cursor-position* and *time* described
below in Section 9.3 are bound beforefunction is called.set-event-
function returnsfunction .

As an example, the following code segment defines a key binding for#\Control-\[
in my-comtab , assuming that it inherits fromtext-edit:*raw-text-edit-
comtab* . Typing Control-[in a window usingmy-comtab calls print-defini-
tion , which moves the cursor to the start of the enclosing definition, reads a Lisp form and
prints it to*standard-output* .

;;; First define the function to read
;;; a definition from "window" and print it.

(defun print-definition (window)
(let ((*read-no-hang* t))

(text-edit:beginning-of-definition
window)

ALLEGRO CL for Windows: Programming Tools 9 - 5

C
om

tabs

(print (read window nil nil))))

;;; Now add the event function to the comtab.

(comtab:set-event-function my-comtab
’(control-key pc:vk-open-square-bracket)
#’print-definition)

event [Generic Function]

Arguments: (stream comtab-mixin) event buttons data time

Package: comtab

■ This is the event function used by text edit windows to convertevents
in a Lispstream into calls to the appropriate comtab functions. It is automat-
ically inherited by text edit windows. Comtab event processing may be imple-
mented in any Allegro CL for Windows stream by using this function to handle
events. See theCommon Graphics section on the Online Manual for general
details of event handling.

9.3 Event variables

The only argument passed to a comtab event function is the stream in which the event
occurred. The following special variables are provided to allow comtab functions to make
their action dependent on the event which caused the function to be called, the mouse but-
ton state, the cursor position and the time. See theCommon Graphics section on the Online
Manual for details of the format of these variables. Their values are only valid during exe-
cution of a comtab event function. They may be destructively modified by the system when
the next event is processed, so you must make a copy of any you want to keep.

event-number [Variable]

Package: comtab

■ the number of the event which caused the comtab function to be called.

button-state [Variable]

Package: comtab

9 - 6 ALLEGRO CL for Windows: Programming Tools

■ the state of the mouse button and modifier keys when the comtab function
was called.

cursor-position [Variable]

Package: comtab

■ the cursor position when the comtab function was called.

time [Variable]

Package: comtab

■ the time when the comtab function was called.

ALLEGRO CL for Windows: Programming Tools A - 1

E
ditor

keybindings

Appendix A Editor keybindings

The following table shows keybindings for the Emacs, Brief and Host text editor modes.
Note tat additional keystrokes are available in Host mode. These are the ones shown in the
keyboard shortcuts in menubar items.
Command Emacs Brief Host

Apropos Ctrl-A --- ---
Backward Character Ctrl-B --- ←
Backward Delete Word --- Ctrl-Backspace ---
Backward Kill Line Alt-K --- Alt-Ctrl-Backsp
Backward Kill Sexp Ctrl-Alt-Backsp --- Ctrl-Backsp
Backward Kill Word Ctrl-Backsp --- ---
Backward List Ctrl-Alt-P --- ---
Backward Sexp Ctrl-Alt- ← --- Alt- ←
Backward Up List Ctrl-Alt- ↓ --- ---
Backward Word Alt- ← --- Ctrl- ←
Beginning Of File Shft-Alt-Comma Home ---
Beginning Of Line Ctrl-A --- ---
Beginning of previous definition --- --- Alt- ↑
Beginning Of Next Definition Ctrl-Alt-] --- Alt- ↓
Capitalize Word Alt-C --- ---
Complete symbol Control-. Control-. Control-.
Delete Horizontal Space Ctrl-Slash --- ---
Delete Indentation Ctrl-6 --- ---
Delete Line --- Alt-K Alt-Delete
Delete Next Character Ctrl-D --- Delete
Delete next S expression --- --- Alt-Delete
Delete Previous Character Ctrl-H --- Backsp
Delete To Kill Buffer Ctrl-W --- ---
Delete Whole Line --- Alt-D ---
Delete Word --- Alt-Backspace ---
Describe Ctrl-X Ctrl-I --- ---
Documentation Ctrl-X Ctrl-D --- ---
Down List Ctrl-Alt-D --- ---

A - 2 ALLEGRO CL for Windows: Programming Tools

Command Emacs Brief Host

Downcase Word Alt-L --- ---
Edit File Ctrl-X Ctrl-F --- ---
End Of Definition Ctrl-Alt-E --- ---
End Of File Shft-Alt-Period End ---
End Of Line Ctrl-E --- ---
Eval Ctrl-X Ctrl-E Alt-F10 ---
Eval Clipboard --- --- ---
Eval Definition Ctrl-Alt-C --- ---
Exchange To Mark Ctrl-X Ctrl-X --- ---
Find Ctrl-S F5 ---

Alt-S
Find Same --- Shft-F5 →
Find Toploop Prompt Ctrl-Shift-N Ctrl-Shift-N Ctrl-Shift-N
Forward Character Ctrl-F --- ---
Forward List Ctrl-Alt-N --- ---
Forward Sexp Ctrl-Alt- → --- Alt- →
Forward Up List Ctrl-Alt-) --- ---
Forward Word Alt- → --- Ctrl- →

Alt-F
Illegal Operation Ctrl-G --- ---

Ctrl-X Ctrl-G
Alt-G
Ctrl-Alt-G

Indent For Comment Ctrl-Semicolon --- ---
Insert Empty List Alt-9 --- ---
Insert Empty String Shft-Alt-2 --- ---
Kill Comment Ctrl-Alt-; --- ---
Kill Line Ctrl-K --- ---
Kill Sexp Ctrl-Alt-K --- ---
Kill Word Alt-D --- ---
Lambda List Ctrl-X Ctrl-L --- ---
Load File Ctrl-X Ctrl-R Alt-R ---
Macroexpand Ctrl-X Ctrl-M --- ---
Mark --- Alt-M ---
New Ctrl-X Ctrl-B --- ---
Newline Enter --- Ctrl-Enter

Ctrl-M
Newline And Indent Ctrl-J Enter Enter
Next Line Ctrl-N --- ---
Next Page Ctrl-V --- ---
Open --- Alt-E ---
Open Line Ctrl-O Ctrl-Return ---
Paste --- Insert ---
Previous Line Ctrl-P --- ---
Previous Page Alt-V --- ---

ALLEGRO CL for Windows: Programming Tools A - 3

E
ditor

keybindings

Command Emacs Brief Host

Quick lambda list Ctrl-Z Ctrl-Z Ctrl-Z
Quick lambda list and insert spacespace space space
quit --- Alt-X ---
Reindent Region Ctrl-X Ctrl-Q Tab ---
Reindent Sexp Ctrl-Alt-Q --- ---
Reindent Single Line Tab --- ---
Replace Ctrl-R F6 ---
Replace Same --- Shft-F6 ---
Replace Without Dialog Alt-R --- ---
Return To Reader Enter Enter ---
Save Ctrl-X Ctrl-S Alt-W ---
Save As Ctrl-X Ctrl-W Alt-O ---
Scroll One Line Down --- Ctrl-D ---
Scroll One Line Up --- Ctrl-U ---
Scroll To Selection Ctrl-L --- ---
Select All Ctrl-X A --- ---
Select To Mark Ctrl-Space --- ---

Ctrl-Space
Set Mark Ctrl-2 --- ---
Transpose Characters Ctrl-T --- Ctrl-‘
Transpose S expression --- --- Alt-‘
Undo Ctrl-X Ctrl-U * ---

Alt-U
Upcase Word Alt-U --- ---
Yank From Kill Buffer Ctrl-Y --- ---
Zoom Window Ctrl-X Z --- ---

A - 4 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

ALLEGRO CL for Windows: Programming Tools I - 1

Index

Index

A
Abort (dialog box button) 2-16
About Allegro CL

Help menu item 1-6
Active document (definition) 3-1
adding text

in a text edit window 3-7
Allegro CL for Windows

starting programmatically 2-31
Alt key 2-5
analyse-definitions-on-opening (variable, text-edit package) 3-43
:apropos (generic function) 3-39
apropos (function, common-lisp package)

in right-button menu and Help menu 1-5
args (variable)

used in tracing 5-5
arrow keys 2-5

B
Backspace key 2-5
backtrace (function, allegro package) 6-10
Backtrace window 6-4
backward-character (function, text-edit package) 3-21
backward-delete-line (function, text-edit package) 3-25
backward-delete-sexp (function, text-edit package) 3-28
backward-delete-word (function, text-edit package) 3-23
backward-kill-line (function, text-edit package) 3-25
backward-kill-sexp (function, text-edit package) 3-27
backward-kill-word (function, text-edit package) 3-22
backward-list (function, text-edit package) 3-28
backward-sexp (function, text-edit package) 3-27
backward-up-list (function, text-edit package) 3-29
backward-word (function, text-edit package) 3-22
beginning-of-definition (function, text-edit package) 3-29

I - 2 ALLEGRO CL for Windows: Programming Tools

beginning-of-file (function, text-edit package) 3-35
beginning-of-line (function, text-edit package) 3-24
beginning-of-next-definition (function, text-edit package) 3-30
bitmaps

inspecting 4-9
brackets-matched-p (function, text-edit package) 3-42
Break key 2-15
breaking 2-15
:breakpoint (generic function) 3-40
breakpoint 5-1

counter values 5-4
example 5-8
setting 5-8, 5-20

breakpoint (macro, allegro package) 5-9, 5-20
Breakpoint (Tools menu choice) 5-16
breakpoint facility

operations concerning 3-40
breakpointf (macro, allegro package) 5-9, 5-20
bringing up lisp 2-1
Browse Class (item in CLOS Tools submenu of Tools menu) 8-2
Browse Generic function (item on CLOS Tools submenu of Tools menu) 8-4
browsing through objects 4-16
Build Call (Tools/Miscellaneous menu choice) 1-8
:build-call (generic function) 3-39
button-state (variable, comtab package) 9-5

C
call-count (variable)

used in tracing 5-5
call-depth (variable)

used in tracing 5-5
capitalize-word (function, text-edit package) 3-23
Change Case (Tools menu choice) 3-16
changing windows 2-21
characters

functions operating on 3-20
Choose Printer... (File/Print submenu choice) 3-13
Choosing a printer 3-13
clear-modified-flag (function, text-edit package) 3-42

ALLEGRO CL for Windows: Programming Tools I - 3

Index

Clipboard (Window menu choice) 2-24
Clipboard window 2-21, 2-24

actions caused by buttons 2-24
and Windows clipboard 2-26
buttons 2-24
copying from a Text edit window results in a string 2-25
Copying to and Pasting from 2-24
displaying 2-24
Edit menu commands, affect on 2-26
Evaluate Selection in Tools menu, affect on 2-26
max number of items (see *lisp-clipboard-limit*) 2-24

CLOS tools 8-1
CLOS Tools (Tools menu item) 8-1
Close (File menu choice) 2-8, 3-3
Close All Inspectors (choice on Inspect submenu of Tools menu) 4-8
command history 2-22
command tables (see comtabs)
Comment In/Out (Edit menu choice) 3-16
comment-newline-and-indent (function, text-edit package) 3-32
comments

in Text edit windows 3-16
operations on 3-30

Compile... (File menu choice) 2-4, 2-19
compiling files 2-19
complete-symbol (function, text-edit package) 3-45
completion (of symbols) 2-6
comtab

defining the commands in a 9-1
definition of 9-1
variable 2-33

comtab (function, comtab package) 9-2
comtab-names (variable, comtab package) 9-3
comtab-p (function, comtab package) 9-2
comtab-report (function, comtab package) 9-3
conditional tracing 5-5
configuring lisp (see preferences) 2-26
Convert (dialog box button) 2-25
Copy (Edit menu choice) 2-24, 2-26, 3-9, 4-8
copy down (defined) 2-14

I - 4 ALLEGRO CL for Windows: Programming Tools

Copy to Top (dialog box button) 2-25
copying text 3-9
copy-to-kill-buffer (function, text-edit package) 3-34
count-bracket-mismatch-between-positions (function, text-edit package) 3-42
counter values in trace 5-4
Create Standalone Form (File menu Images submenu item) 2-30
creating a new document in text editor 3-1
current package on startup 2-3
current-symbol (function, text-edit package) 3-24
cursor

during garbage collection 1-8
cursor-position (variable, comtab package) 9-6
Cut (Edit menu choice) 2-24, 2-26, 3-9, 4-8

D
data structures

how to examine 4-16
debugger 6-1

and stepper windows 7-7
Backtrace window 6-4
control buttons in window 6-9
examining stack frames 6-5
exiting 6-6
looking at the stack 6-2
reference 6-8
stack frames 6-1
stack frame labels 6-8

debugger (function, allegro package) 6-10
debugger window 6-4
debugging 6-1
debugging tools

operations that access 3-40
defdefiner (macro, toploop package) 2-36, 3-5
definitions

operations on 3-29
Delete (Edit menu choice) 3-9
Delete key 2-5
delete-definitions (function, toploop package) 2-35
delete-horizontal-space (function, text-edit package) 3-32

ALLEGRO CL for Windows: Programming Tools I - 5

Index

delete-indentation (function, text-edit package) 3-32
delete-line (function, text-edit package) 3-25
delete-mark (function, text-edit package) 3-36
delete-next-character (function, text-edit package) 3-21
delete-previous-character (function, text-edit package) 3-21
delete-sexp (function, text-edit package) 3-27
delete-to-kill-buffer (function, text-edit package) 3-33
delete-word (function, text-edit package) 3-23
deleting text

in Toploop window 2-5
:describe (function) 3-39
dialog box

for errors 2-15
Dialog boxes 2-14
Display Selection (Search/Marks submenu choice) 3-13, 3-14
displaying using the Window menu 2-21
:documentation (function) 3-39
downcase-word (function, text-edit package) 3-23
down-list (function, text-edit package) 3-29

E
Edit menu

and the Clipboard window 2-26
Comment In/Out 3-16
Copy 2-24, 2-26, 3-9, 4-8
Cut 2-24, 2-26, 3-9, 4-8
Delete 3-9
Paste 2-24, 2-26, 3-9, 4-8
Pop 2-26
Select All 3-15
Undo 4-5
Undo to Before 4-5

edit-bitmap (function, inspector package) 4-17
edit-file (function, text-edit package) 3-43
editor (text)

adding text 3-7
associating a package with text files 3-17
cancelling changes 3-3
closing a document 3-3

I - 6 ALLEGRO CL for Windows: Programming Tools

editor (text) continued
creating a new document 3-1
evaluating forms 3-14
finding text 3-10
inserting text 3-7
keybindings A-1
marking text 3-12
opening a file 3-1
opening an existing document 3-1
printing a document 3-14
renaming a file 3-2
replacing text 3-11
saving a file 3-2
searching 3-10
transposing characters 3-9

end-of-definition (function, text-edit package) 3-30
end-of-file (function, text-edit package) 3-35
end-of-line (function, text-edit package) 3-24
Enter Debugger (dialog box button) 2-16
Enter key 2-5
erasing text

in Toploop window 2-5
error dialog box 2-15
error on redefinition 3-6
errors

dealing with 2-15
functions named in message may be unexpected 2-16

eval-definition (function, text-edit package) 3-30
Evaluate (dialog box button) 2-25
Evaluate Clipboard (Tools menu choice) 2-26
evaluating forms in a Text Edit window 3-14
evaluating incomplete form (causing an error) 3-15
evaluating of input

variable for controlling 2-32
evaluation

in Toploop window 2-14
event (generic function, comtab package) 9-5
event functions 9-4
event variables 9-5

ALLEGRO CL for Windows: Programming Tools I - 7

Index

event-number (variable, comtab package) 9-5
examples

breakpoint 5-8
inspector 4-2
profiling 5-10
super-brackets 2-7

:exchange-to-mark (generic function) 3-37
Exiting (from Lisp) 2-8

confirming 2-8
Exit (File menu choice) 2-8
exiting from the debugger 6-6

F
file (function, text-edit package) 3-43
File menu

Choose Printer... 3-13
Close 2-8, 3-3
Compile... 2-4, 2-19
Exit 2-8
Images: Create Standalone Form 2-30
Images: Load Image... 2-29
Images: Save Image... 2-28
Load... 2-17
New 2-4, 3-1
Open... 3-1
Print 3-13
Print... 3-14
Print/Print... 3-14
Revert to Saved 3-3, 4-5
Save 3-2
Save As... 3-2, 3-3

files
compiling 2-19
loading 2-17
operations concerned with loading and saving 3-43
operations on 3-35

:find (generic function) 3-37
Find Again (Search menu choice) 3-11
Find Clipboard (Search menu choice) 3-11

I - 8 ALLEGRO CL for Windows: Programming Tools

Find Definition (Search menu choice) 3-4
Find Definition window 2-21, 3-4

editing the source 3-5
Find dialog box (for finding text) 3-10
Find... (Search menu choice) 3-10
find-applicable-method-definitions (function, toploop package) 2-35
:find-clipboard (generic function) 3-38
:find-definition (generic function) 3-40
finding a definition 3-4
finding text 3-10
find-method-definition (function, toploop package) 2-35
find-method-definition-from-name (function, toploop package) 2-35
:find-same (generic function) 3-38
find-start-of-comment (function, text-edit package) 3-30
find-symbol-definition (function, toploop package) 2-35
find-toploop-prompt (function, toploop package) 2-33
flag-modified-text-windows-p (variable, text-edit package) 3-44
format (function)

don’t trace 5-4
formatting a document 3-15
forms

operations on 3-26
forward-character (function, text-edit package) 3-20
forward-list (function, text-edit package) 3-28
forward-sexp (function, text-edit package) 3-27
forward-up-list (function, text-edit package) 3-29
forward-word (function, text-edit package) 3-22
function

profiling of 5-21
tracing calls only to a specially tagged one 5-19
tracing calls to a 5-18
turning off the tracing of 5-19
turning off the tracing of every function 5-19

function calls
tracing 5-18

function redefinition 3-6

ALLEGRO CL for Windows: Programming Tools I - 9

Index

G
garbage collection

cursor 1-8
get-mark (function, text-edit package) 3-36
get-region (function, text-edit package) 3-33
getting help 1-4
Graph subclasses (item on CLOS Tools submenu of Tools menu) 8-3
Graph superclasses (item on CLOS Tools submenu of Tools menu) 8-3

H
help 1-4
Help menu

About Allegro CL 1-6
Manual Contents 1-7
Manual Entry 1-7
Quick Symbol Info 1-7

Help window 2-21
help-output (variable) 1-8
History (Windows menu choice) 2-22
History dialog

buttons 2-23
panes 2-23

history list 2-22
history of evaluation of forms

functions and variables pertaining to 2-34
History window (dialog) 2-21
hung system (see interrupting lisp) 2-15

I
illegal-operation (function, comtab package) 9-3
indentations

operations on, or concerning 3-31
indent-for-comment (function, text-edit package) 3-31
inherit-from (function, comtab package) 9-3
initial package 2-3
initialization 2-1
initialization file 2-3
in-package (function) 2-22

I - 10 ALLEGRO CL for Windows: Programming Tools

insert-character (function, text-edit package) 3-21
insert-empty-list (function, text-edit package) 3-28
insert-empty-string (function, text-edit package) 3-42
inserting text

in a Text Edit window 3-7
insertion point

in Toploop window 2-5
:inspect (generic function) 3-41
inspect (function, common-lisp package) 4-16
Inspect (Tools menu choice) 4-5
Inspect Selected Object (Tools menu/Inspect submenu choice) 4-4
Inspect System Data (Tools menu Inspect submenu choice) 4-12
inspect-all-slots (variable, inspector package) 4-14
inspect-bitmap-as-array (variable, inspector package) 4-18
inspect-bit-vector-as-sequence (variable, inspector package) 4-18
inspected-object (function, inspector package) 4-22
inspecting bitmaps 4-9
inspecting system data 4-12
inspect-length (variable, inspector package) 4-13, 4-17
inspect-list (variable, inspector package) 4-17
inspect-object (generic function, inspector package) 4-19
Inspector

control variables for 4-17
program interface to 4-16
two main parts of 4-16

inspector 4-1
arrow keys 4-5
bringing up an inspector window 4-4
changing slot values to default 4-8
example 4-2
inspecting bitmaps 4-9
inspecting system data 4-12
modifying slots 4-5
preferences 4-12
print length (see *inspector-length*) 4-13
summary of usage 4-14
undoing modifications 4-5
using 4-2
which slots can be modified? 4-5

ALLEGRO CL for Windows: Programming Tools I - 11

Index

Inspector Manager
purpose of 4-16

Inspector Pane
purpose of 4-16
operations on 4-22

Inspector window
arrow keys 4-5
changing slot values to default 4-8
displaying 4-4
inspecting bitmaps 4-9

Inspectors
defining new 4-19

inspector-window-height (variable, inspector package) 4-29
inspector-window-height-factor (variable, inspector package) 4-29
inspector-window-width (variable, inspector package) 4-29
inspector-window-width-factor (variable, inspector package) 4-29
inspect-string-as-sequence (variable, inspector package) 4-18
inspect-structure-as-sequence (variable, inspector package) 4-18
inspect-with (function, inspector package) 4-20
inspect-with-slots (function, inspector package) 4-21
interrupting 2-15
interrupting lisp 2-15
Invoke Selected Restart (dialog box button) 2-16

K
keybindings for editor modes A-1
kill-comment (function, text-edit package) 3-30
kill-line (function, text-edit package) 3-24
kill-sexp (function, text-edit package) 3-27
kill-word (function, text-edit package) 3-22

L
:lambda-list (generic function) 3-39
lines

operations on 3-24
Lisp clipboard

and Windows clipboard 2-26
defined 2-24
max size (see also *lisp-clipboard-limit*) 2-24

I - 12 ALLEGRO CL for Windows: Programming Tools

Lisp clipboard (continued)
size (see also *lisp-clipboard-limit*) 2-24

lisp environment
setting preferences 2-26

lisp.exe (Windows executable file used to start Allegro CL) 2-31
lisp-clipboard-limit (variable) 2-24
lisp-message (function, common-graphics package) 2-13, 2-37
lisp-message-print-length (variable, common-graphics package) 2-13, 2-38
lisp-message-print-level (variable, common-graphics package) 2-13, 2-38
lisp-status-bar-font (variable, toploop package) 2-38
lisp-status-bar-number-of-lines (variable, toploop package) 2-38
lists (operations on) 3-28
load (function) 2-4, 2-18
Load Image... (File menu Images submenu item) 2-29
Load... (File menu choice) 2-17
load-file (function, text-edit package) 3-43
loading files 2-17

M
make-comtab (function, comtab package) 9-2
make-mark (function, text-edit package) 3-35
managing windows 2-21
manual

where to find things 1-1
Manual Contents

Help menu item 1-7
Manual Entry

Help menu item 1-7
:mark (generic function) 3-36
marking text 3-12
mark-p (function, text-edit package) 3-36
mark-position (function, text-edit package) 3-36
marks

operations on 3-35
Marks (Search menu submenu) 3-12
max-symbol-completion-choices (variable, text-edit package) 3-46
menu bar 2-9
:modified-p (generic function) 3-42
moving text 3-9

ALLEGRO CL for Windows: Programming Tools I - 13

Index

N
New (File menu choice) 2-4, 3-1
newline (function, text-edit package) 3-26
newline-and-indent (function, text-edit package) 3-31
next-line (function, text-edit package) 3-25
next-page (function, text-edit package) 3-34
no response (see interrupting lisp) 2-15
notation used in text 1-2
number-of-lines-in-window (function, text-edit package) 3-34

O
online manual 1-7
Open... (File menu choice) 3-1
opening a document (in text editor) 3-1
open-line (function, text-edit package) 3-26

P
packages

associating with Text Edit window 3-17
changing 2-22

Packages menu 2-22
changing packages 2-22

panes
operations on 3-34

parentheses
closing 2-14
super 2-14

Paste (Edit menu choice) 2-24, 2-26, 3-9, 4-8
Pause key (see Break key) 2-15
places

tracing 5-7
Pop (dialog box button) 2-25
Pop (Edit menu choice) 2-26
preferences 2-26

defined 2-26
inspector 4-12

Preferences menu 2-26
Save Preferences... 2-4

I - 14 ALLEGRO CL for Windows: Programming Tools

prefs.fsl (file) 2-4
prefs.lsp (file) 2-4

creating 2-4
Pretty Print (Tools menu choice) 3-16
pretty-print-region (function, text-edit package) 3-33
previous-line (function, text-edit package) 3-25
previous-page (function, text-edit package) 3-35
Print... (File/Print submenu choice) 3-14
print-case (variable) 3-16
Printer Setup... (File/Print submenu choice) 3-14
printing

choosing a printer 3-13
from Allegro CL 3-13
variable controlling 2-32
variable controlling max. depth to which results of evaluation are printed 2-32
variable controlling max. length to which results of evaluation are printed 2-32

printing a document 3-14
:profile (generic function) 3-40
profile 5-1, 5-10

and garbage collection 5-14
counter values 5-4
example 5-10
interpreting results 5-13
overheads 5-14
profiling what you want 5-16
starting 5-11

profile (macro, allegro package) 5-11, 5-21
Profile (Tools menu choice) 5-16
profile facility

operations concerning 3-40
profilef place (macro, allegro package) 5-21
profilef-reset (macro, allegro package) 5-22
profilef-results (macro, allegro package) 5-22
profile-reset (macro, allegro package) 5-22
profile-results (macro, allegro package) 5-22
profiling 5-10
profiling of functions 5-21

ALLEGRO CL for Windows: Programming Tools I - 15

Index

prompt
finding a new prompt 2-6
in Toploop window 2-5
variable controlling 2-32

Q
Quick Symbol Info

Help menu item 1-7
quick-lambda-list (function, text-edit package) 3-44
quick-lambda-list-and-insert-space (function, text-edit package) 3-45
Quit (see Exit) 2-8
quitting of a Lisp application

variable controlling the 2-33

R
read (function)

and Toploop window 2-15
reading

variable controlling 2-32
read-region (function, text-edit package) 3-33
redefinition of a Lisp object 3-7
redefinition of a system function 3-7
redefinition warnings 3-6
redisplay-inspector-window (function, inspector package) 4-22
reformatting a document 3-15
regions in Text Editor windows (operations on) 3-32
reindent-line (function, text-edit package) 3-31
reindent-region (function, text-edit package) 3-33
reindent-sexp (function, text-edit package) 3-31
renaming a file 3-2
:replace (generic function) 3-38
Replace Again (Search menu choice) 3-12
Replace dialog box (for replacing text) 3-11
Replace... (Search menu choice) 3-11, 3-12
:replace-same (generic function) 3-38
replacing

text in Text edit windows 3-11
Revert to Saved (File menu choice) 3-3, 4-5
:revert-to-saved (generic function) 3-41

I - 16 ALLEGRO CL for Windows: Programming Tools

S
:save (function) 3-44
save

unsaved text-edit windows have * in the title 3-44
Save (File menu choice) 3-2
Save As dialog box (for saving files) 3-2
Save As... (File menu choice) 3-2, 3-3
Save Image... (File menu Images submenu item) 2-28
Save Preferences... (Preferences menu choice) 2-4
save-file (function, text-edit package) 3-43
saving

a file 3-2
work (see Save Image...) 2-28

scroll-one-line-down (function, text-edit package) 3-34
scroll-one-line-up (function, text-edit package) 3-34
Search menu

Find Again 3-11
Find Clipboard 3-11
Find Definition 3-4
Find... 3-10
Marks 3-12
Replace Again 3-12
Replace... 3-11, 3-12

Select All (Edit menu choice) 3-15
Select to Mark (Search/Marks submenu choice) 3-13
select-all (function, text-edit package) 3-33
select-current-word (function, text-edit package) 3-24
selecting text 3-8
Selection (item from Evaluate submenu of Tools menu) 3-14, 3-15
:select-to-mark (generic function) 3-36
sequence-structure-slots-settable (variable, inspector package) 4-18
session-init-fns (variable) 2-4
Set Mark

(menu item on Search/Marks submenu) 3-12
set-comtab (function, comtab package) 9-2
set-event-function (function, comtab package) 9-4
set-region (function, text-edit package) 3-32
size limit (in Text edit windows -- 32K) 3-2

ALLEGRO CL for Windows: Programming Tools I - 17

Index

slot-value pair 4-16
sort-inspected-slots (variable, inspector package) 4-14
source code

functions pertaining to finding 2-35
variables controlling the finding of 2-35

source file
finding a definition 3-4
opening 3-1

stack frames 6-1
examining 6-5
labels 6-8

stack-browser-window-height (variable, debugger package) 6-12
stack-browser-window-left (variable, debugger package) 6-11
stack-browser-window-top (variable, debugger package) 6-12
stack-browser-window-width (variable, debugger package) 6-12
Starting Lisp 2-1
starting profiling 5-11
starting tracing 5-3
starting up 2-1
startup file 2-3
startup.fsl (file) 2-4
startup.lsp (file) 2-4

creating 2-4
large files 2-4

status bar 2-12, 2-37
changing font 2-13
changing number of lines displayed 2-13
described 2-12

step (macro) 7-1, 7-7
Step Control Window (same as Stepper window) 7-2
stepper 7-1

aborting stepping 7-4
and recursive functions 7-7
and Toploop window 7-5
ending stepping 7-4
entering the debugger 7-7
finding out what called step 7-8
finishing stepping 7-4
saving window contents 7-7

I - 18 ALLEGRO CL for Windows: Programming Tools

stepper (continued)
skipping expressions 7-5
Stepper window 7-2
stepping forward 7-5
stepping through a form 7-1
using when not at the top level 7-7

Stepper window 7-2
saving 7-7

Stop (see Exit) 2-8
stopping computation 2-15
string-replace (function, text-edit package) 3-37
string-search (function, text-edit package) 3-37
super-brackets (defined) 2-7, 2-14
Swap with Mark (Search/Marks submenu choice) 3-12
symbol completion 2-6
symbol-completion-searches-all-packages (variable, allegro package) 2-6
symbols

operations that provide information about 3-38

T
terminal-io 2-32
text

operations concerned with searching and replacing 3-37
Text Edit window

associating a package with 3-17
comments 3-16
evaluation 3-14
package associated with 3-17
reformatting 3-15
size limit (32K) 3-2

Text editor
adding text 3-7
cancelling changes 3-3
closing a document 3-3
creating a new document 3-1
finding a definition 3-4
finding text 3-10
finding the source 3-5
inserting text 3-7

ALLEGRO CL for Windows: Programming Tools I - 19

Index

Text editor (continued)
keybindings A-1
marking text 3-12
opening a file 3-1
opening a new document 3-1
opening an existing document 3-1
printing a document 3-14
renaming a file 3-2
replacing text 3-11
saving a file 3-2
searching 3-10
transposing characters 3-9

Text editor (chapter 3) 3-1
Text window

copying text 3-9
moving text 3-9
selecting text 3-8

time (variable, comtab package) 9-6
timing information

how to obtain 5-21
Toggle Status Bar

menu item on menu displayed by choosing Toolbar/Status Bar from Tools menu 2-13
Toggle Toolbar

menu item on menu displayed by choosing Toolbar/Status Bar from Tools menu 2-10
toolbar 2-10

described 2-10
displaying and hiding 2-10, 2-13
editing with toolbar palette 2-11
F11 key displays and hides 2-10, 2-13
in edit mode when toolbar palette is displayed 2-11

Toolbar Palette
menu item on menus displayed by choosing Toolbar/Status Bar from Tools menu 2-11

Toolbar/Status Bar
menu item on Tools menu 2-10, 2-13

Tools menu
Build Call 1-8
Change Case 3-16
CLOS Tools 8-1
CLOS Tools: Browse Generic function 8-4

I - 20 ALLEGRO CL for Windows: Programming Tools

Tools menu (continued)
CLOS Tools:Graph subclasses 8-3
CLOS Tools: Graph superclasses 8-3
CLOS Tools: Browse Class 8-2
Evaluate Clipboard 2-26
Evaluate: Selection 3-14, 3-15
Inspect 4-4, 4-5
Inspect System data 4-12
Pretty Print 3-16
Toolbar/Status Bar item 2-10, 2-13

top-eval (variable, toploop package) 2-32
top-history-count (variable, toploop package) 2-34
top-history-limit (variable, toploop package) 2-23, 2-34
top-history-list (variable, toploop package) 2-34
top-level (variable, toploop package) 2-33
Toploop 2-2
toploop (function, toploop package) 2-3, 2-37
toploop prompt

finding a new one 2-6
Toploop variables 2-31
Toploop window

and stepping 7-5
as a Text Edit window 2-5
cannot type to while stepping 7-5
closing 2-8
copying down text 2-14
deleting text 2-5
erasing text 2-5
evaluating 2-14
illustrated 2-3
prompt 2-5
text insertion point 2-5
typing to 2-5

toploop-comtab (variable, toploop package) 2-33
toploop-window (variable, toploop package) 2-32
top-print (variable, toploop package) 2-32
top-print-length (variable, allegro package) 2-32
top-print-level (variable, allegro package) 2-32
top-prompt (variable, toploop package) 2-32

ALLEGRO CL for Windows: Programming Tools I - 21

Index

top-push-history (function, toploop package) 2-34
top-query-exit (variable) 2-8
top-query-exit (variable, toploop package) 2-33
top-read (variable, toploop package) 2-32
top-replace-history (function, toploop package) 2-34
:trace (generic function) 3-40
trace 5-1

args (variable) 5-5
call-count (variable) 5-5
call-depth (variable) 5-5
conditional 5-5
counter values 5-4
don’t trace certain functions 5-4
ending tracing 5-5
infinite loops 5-4
output (where it goes) 5-4
print length 5-4
print level 5-4
removing tracing 5-5
simple tracing 5-2
starting 5-3
tracing many things 5-6
tracing places 5-7
untracing places 5-8

trace (macro, common-lisp package) 5-4, 5-18
Trace (Tools menu choice) 5-16
trace facility

operations concerning 3-40
trace function, syntax and semantics of 5-18
tracef (macro, allegro package) 5-7, 5-19

syntax and semantics of 5-19
trace-print-length (variable, allegro package) 5-4, 5-18
trace-print-level (variable, allegro package) 5-4, 5-18
tracing of functions, how to turn off 5-19
transposing characters 3-9
transpose-characters (function, text-edit package) 3-21

I - 22 ALLEGRO CL for Windows: Programming Tools

U
:unbreakpoint (generic function) 3-41
unbreakpoint (macro, allegro package) 5-20
unbreakpointf (macro, allegro package) 5-10, 5-20
:undo (generic function) 3-41
Undo (Edit menu choice) 4-5
Undo to Before (Edit menu choice) 4-5
:unprofile (generic function) 3-41
unprofile (macro, allegro package) 5-22
unprofilef (macro, allegro package) 5-22
:untrace (generic function) 3-40
untrace (macro, common-lisp package) 5-5, 5-19
untracef (macro, allegro package) 5-8, 5-19
unwatch (macro) 7-9
upcase-word (function, text-edit package) 3-23

V
variable-browser-max-width (variable, debugger package) 6-11
variable-browser-min-height (variable, debugger package) 6-11
variable-browser-min-width (variable, debugger package) 6-11
variable-browser-offset (variable, debugger package) 6-11

W
watch facility 7-1, 7-8

stopping watching 7-9
unwatching 7-9
updating programmatically 7-10
watching places 7-8
what can be watched 7-8

watch-print (function) 7-10
Window menu 2-21
windows 2-21
Windows clipboard 2-26
Windows menu 2-21

Clipboard 2-24
History 2-22

words
operations on 3-22

ALLEGRO CL for Windows: Programming Tools I - 23

Index

work
saving (see Save Image...) 2-28

Y
yank-from-kill-buffer (function, text-edit package) 3-34

I - 24 ALLEGRO CL for Windows: Programming Tools

[This page intentionally left blank.]

Debugge

Allegro CL for
Windows

General
Index

version 3.0

October, 1995

Copyright and other notices:

This is revision 1 of this manual. This manual has Franz Inc. document number D-U-00-
PC0-12-51019-3-1.

Copyright 1994, 1995 by Franz Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means
electronic, mechanical, by photocopying or recording, or otherwise, without the prior and
explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademarks of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: General Index p - 1

Introduction

PREFACE

This document is a general index for all the bound manuals included with the Allegro CL
for Windows product. Each entry in this index identifies the manual, the volume (I or II),
the chapter in the manual, and the page in the chapter. (Chapter pages are numberedN-M
whereN is the chapter number andM is the page number within the chapter. Note that the
Getting Started manual does not have chapters so its pages are number 1, 2, 3, etc.)

We have simply combined the indexes for each manual.

The table below page identifies the manuals from the codes used in this index. The codes
are also explained at the foot of every page of index.

Each manual has its own index as well.

Note that theProfessional supplement, which includes theRuntime Generator manual,
(only provided with the Professional version of Allegro CL for Windows) is not indexed in
this document.

Code Manual In Vol.

CLI Common Lisp Introduction 1

FFI Foreign Function Interface 1

GS Getting Started 1

IB Interface Builder 1

PT Programming Tools 2

p - 2 ALLEGRO CL for Windows: General Index

[This page intentionally left blank.]

ALLEGRO CL for Windows: General Index 1

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Index

Symbols
#’ CLI-I-10-1
#s syntax

structure reader syntax CLI-I-9-9
< (ascending order function) CLI-I-3-5
= CLI-I-3-5, CLI-I-12-10
= function, syntax and semantics of CLI-I-3-5
> (descending order function) CLI-I-3-4

Numerics
16-bit DLL (not supported under Windows 95 or Windows NT) FFI-I-2-4

A
Abort (dialog box button) PT-II-2-16
About Allegro CL

Help menu item PT-II-1-6
abs CLI-I-3-3
absolute value CLI-I-3-3
access function CLI-I-9-6, CLI-I-9-9, CLI-I-A-1
accessor CLI-I-13-4
Active document (definition) PT-II-3-1
active-client-ports (variable, dde package) FFI-I-4-5
active-server-ports (variable, dde package) FFI-I-4-7
Add Window (window pop-up menu item) IB-I-1-6
adding text

in a text edit window PT-II-3-7
addition CLI-I-3-1
after method CLI-I-13-8
alist CLI-I-9-1, CLI-I-A-1

2 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Allegro CL for Windows
anomalies GS-I-23
case-insensitive GS-I-24
documentation GS-I-6
FAQ GS-I-16
image size GS-I-24
installation GS-I-2
maximum image size GS-I-24
patches GS-I-16
Professional version GS-I-3, GS-I-4, GS-I-7, GS-I-18, GS-I-21
screen on startup GS-I-10
Standard version GS-I-3, GS-I-4, GS-I-18
starting programmatically PT-II-2-31
support GS-I-26
things to note GS-I-23
WWW page GS-I-16

allegro.ini (initialization file) GS-I-24
Alt key PT-II-2-5

used for selecting menu items GS-I-13
Alt-Tab key combination

does not work when mouse is over dialog being edited IB-I-1-3
analyse-definitions-on-opening (variable, text-edit package) PT-II-3-43
and CLI-I-7-3
anomalies in Allegro CL for Windows GS-I-23
answer-request (generic function, dde package) FFI-I-4-8
append CLI-I-4-5, CLI-I-12-6
append function, syntax and semantics of CLI-I-4-5
apply CLI-I-10-2
:apropos (generic function) PT-II-3-39
apropos (function, common-lisp package)

in right-button menu and Help menu PT-II-1-5
aref CLI-I-9-5
args (variable)

used in tracing PT-II-5-5
arguments

any number of CLI-I-10-7

ALLEGRO CL for Windows: General Index 3

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

arithmetic functions CLI-I-3-1
around method CLI-I-13-8
array CLI-I-A-1
array entries

retrieving or modifying CLI-I-9-5
array-rank-limit CLI-I-9-5
arrays CLI-I-9-5

making CLI-I-9-5
zero-dimensional CLI-I-9-5

arrow keys PT-II-2-5
assignment CLI-I-A-1
assoc CLI-I-9-1
association list CLI-I-9-1, CLI-I-A-1
associations

retrieving CLI-I-9-1
atom CLI-I-A-5
attempt to set non-special free variable warning CLI-I-14-6

B
backquote CLI-I-11-2, CLI-I-11-3
Backspace key PT-II-2-5
backtrace (function, allegro package) PT-II-6-10
Backtrace window PT-II-6-4
backward-character (function, text-edit package) PT-II-3-21
backward-delete-line (function, text-edit package) PT-II-3-25
backward-delete-sexp (function, text-edit package) PT-II-3-28
backward-delete-word (function, text-edit package) PT-II-3-23
backward-kill-line (function, text-edit package) PT-II-3-25
backward-kill-sexp (function, text-edit package) PT-II-3-27
backward-kill-word (function, text-edit package) PT-II-3-22
backward-list (function, text-edit package) PT-II-3-28
backward-sexp (function, text-edit package) PT-II-3-27
backward-up-list (function, text-edit package) PT-II-3-29
backward-word (function, text-edit package) PT-II-3-22
before method CLI-I-13-8
beginning-of-definition (function, text-edit package) PT-II-3-29

4 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

beginning-of-file (function, text-edit package) PT-II-3-35
beginning-of-line (function, text-edit package) PT-II-3-24
beginning-of-next-definition (function, text-edit package) PT-II-3-30
binding CLI-I-6-1, CLI-I-A-1
bitmaps (inspecting) PT-II-4-9
.bml file IB-I-1-19
.bmp file IB-I-1-19
box-and-arrow CLI-I-12-2
brackets-matched-p (function, text-edit package) PT-II-3-42
Break key PT-II-2-15

interrupting Lisp GS-I-14
breaking PT-II-2-15
breaking into Lisp GS-I-14
:breakpoint (generic function) PT-II-3-40
breakpoint PT-II-5-1

counter values PT-II-5-4
example PT-II-5-8
setting PT-II-5-8

breakpoint (macro, allegro package) PT-II-5-9, PT-II-5-20
Breakpoint (Tools menu choice) PT-II-5-16
breakpoint facility

operations concerning PT-II-3-40
breakpointf (macro, allegro package) PT-II-5-9, PT-II-5-20
breakpoints

setting PT-II-5-20
bringing up lisp PT-II-2-1
Browse Class (item in CLOS Tools submenu of Tools menu) PT-II-8-2
Browse Generic function (item on CLOS Tools submenu of Tools menu) PT-II-8-4
browsing through objects PT-II-4-16
bug fixes (see patches) GS-I-16
Build Call (Tools/Miscellaneous menu choice) PT-II-1-8
:build-call (generic function) PT-II-3-39
Builder menu IB-I-1-2
builder preferences

Interface Builder dialog IB-I-1-4
button-state (variable, comtab package) PT-II-9-5

ALLEGRO CL for Windows: General Index 5

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

C
c:\allegro (default installation directory) GS-I-3
call CLI-I-A-1
call-count (variable)

used in tracing PT-II-5-5
call-depth (variable)

used in tracing PT-II-5-5
callocate (macro, ct package) FFI-I-3-3
capitalize-word (function, text-edit package) PT-II-3-23
car CLI-I-4-1
carriage return CLI-I-5-5
carriage return, how to output a CLI-I-5-5
case-insensitivity GS-I-24
ccallocate (macro, ct package) FFI-I-3-3
cdr CLI-I-4-1
cg (directory of examples) GS-I-21
Change Case (Tools menu choice) PT-II-3-16
changing windows PT-II-2-21
:char (c-type-spec) FFI-I-3-1
characters

functions operating on PT-II-3-20
printing special CLI-I-5-4
special, examples of CLI-I-5-4

Choose Printer... (File/Print submenu choice) PT-II-3-13
Choosing a printer PT-II-3-13
class (in CLOS) CLI-I-13-2
class inheritance CLI-I-13-6
clause CLI-I-A-1
clear-modified-flag (function, text-edit package) PT-II-3-42
client-port (class in DDE facility) FFI-I-4-2

initargs FFI-I-4-2
Clipboard (Window menu choice) PT-II-2-24
Clipboard window PT-II-2-21, PT-II-2-24

actions caused by buttons PT-II-2-24
and Windows OS clipboard PT-II-2-26

6 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Clipboard window (continued)
buttons PT-II-2-24
copying from a Text edit window results in a string PT-II-2-25
Copying to and Pasting from PT-II-2-24
displaying PT-II-2-24
Edit menu commands, affect on PT-II-2-26
Evaluate Selection in Tools menu, affect on PT-II-2-26
max number of items (see *lisp-clipboard-limit*) PT-II-2-24

Clone Widget (widget pop-up menu item) IB-I-1-2
Clone Window (window pop-up menu miscellaneous submenu item) IB-I-1-10
CLOS CLI-I-13-1

accessors CLI-I-13-4
class CLI-I-13-2
class inheritance CLI-I-13-6
generic function CLI-I-13-2
inheritance CLI-I-13-3
initargs CLI-I-13-4
initform CLI-I-13-4
method combination CLI-I-13-8
methods CLI-I-13-2
primary method CLI-I-13-9
shared slots CLI-I-13-11
slots CLI-I-13-3
superclass CLI-I-13-7

CLOS tools PT-II-8-1
CLOS Tools (Tools menu item) PT-II-8-1
Close (File menu choice) PT-II-2-8, PT-II-3-3
Close All Inspectors (choice on Inspect submenu of Tools menu) PT-II-4-8
Close box GS-I-12
close-port (function, dde package) FFI-I-4-3
close-server (function, dde package) FFI-I-4-7
code

how to save code IB-I-1-11
Code (window pop-up menu item) IB-I-1-8
comma

and backquote CLI-I-11-2

ALLEGRO CL for Windows: General Index 7

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

comma-at CLI-I-11-3
command history PT-II-2-22
command tables

see comtabs
Comment In/Out (Edit menu choice) PT-II-3-16
comment-newline-and-indent (function, text-edit package) PT-II-3-32
comments

in Text edit windows PT-II-3-16
operations on PT-II-3-30

comments, inserting into a function definition CLI-I-2-5
Common Graphics

example directory GS-I-21
Common Lisp Introduction (manual) GS-I-6
Common Lisp Object System CLI-I-13-1
Compile... (File menu choice) PT-II-2-4, PT-II-2-19
compiler warnings

attempt to set non-special free variable CLI-I-14-6
compiling files PT-II-2-19
complete-symbol (function, text-edit package) PT-II-3-45
completion (of symbols) PT-II-2-6
comtab

defining the commands in a PT-II-9-1
definition of PT-II-9-1
variable PT-II-2-33

comtab (function, comtab package) PT-II-9-2
comtab-names (variable, comtab package) PT-II-9-3
comtab-p (function, comtab package) PT-II-9-2
comtab-report (function, comtab package) PT-II-9-3
comtabs

how they are built up PT-II-9-1
new, default parent for PT-II-9-1

cond CLI-I-7-6
conditional testing CLI-I-7-3
conditional tracing PT-II-5-5
conditionals CLI-I-7-1
configuring lisp (see preferences) PT-II-2-26

8 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

cons CLI-I-4-4
box-and-arrow description CLI-I-12-4

cons cells CLI-I-12-1, CLI-I-12-2
cons function, syntax and semantics of CLI-I-2-3, CLI-I-4-4
constructor CLI-I-A-5
conventions used in this manual CLI-I-1-3
Convert (dialog box button) PT-II-2-25
Copy (Edit menu choice) PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8
Copy Attribute (widget pop-up menu item) IB-I-1-4
copy down PT-II-2-5
copy down (defined) PT-II-2-14
Copy to Top (dialog box button) PT-II-2-25
copying text PT-II-3-9
copy-to-kill-buffer (function, text-edit package) PT-II-3-34
count-bracket-mismatch-between-positions (function, text-edit package) PT-II-3-42
counter values in trace PT-II-5-4
cpointer

comparing with equal FFI-I-3-20
comparing with equalp FFI-I-3-20

cpointer-value (function, ct package) FFI-I-3-4
Create Standalone Form (File menu Images submenu item) PT-II-2-30
creating a dialog (or other window) with the IB IB-I-1-1
creating a new document in text editor PT-II-3-1
cref (macro, ct package) FFI-I-3-4
cset (macro, ct package) FFI-I-3-6
csets (macro, ct package) FFI-I-3-7
ct (nickname of c-types package) FFI-I-1-1
c-types (package for ffi symbols, nickname ct) FFI-I-1-1
current package on startup PT-II-2-3
current-symbol (function, text-edit package) PT-II-3-24
cursor

during garbage collection PT-II-1-8
cursor-position (variable, comtab package) PT-II-9-6
Cut (Edit menu choice) PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8

ALLEGRO CL for Windows: General Index 9

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

D
Data CLI-I-A-2
data

basic types (symbols, numbers, lists) CLI-I-2-1
no distinction between Lisp data and Lisp programs CLI-I-1-2

data abstraction CLI-I-9-6, CLI-I-A-2
data and programs CLI-I-1-2
data constructor CLI-I-A-5
data mutator CLI-I-A-5
data selector CLI-I-A-5
data structures CLI-I-9-1

how to examine PT-II-4-16
data type

defstruct CLI-I-9-8
DDE

client functionality FFI-I-4-2
server functionality FFI-I-4-5

dde (directory of examples) GS-I-21
DDE interface FFI-I-4-1
debugger CLI-I-14-1, PT-II-6-1

and stepper windows PT-II-7-7
Backtrace window PT-II-6-4
control buttons in window PT-II-6-9
examining stack frames PT-II-6-5
exiting PT-II-6-6
looking at the stack PT-II-6-2
reference PT-II-6-8
stack frames PT-II-6-1
stack frame labels PT-II-6-8

debugger (function, allegro package) PT-II-6-10
debugger window PT-II-6-4
debugging PT-II-6-1
debugging tools

operations that access PT-II-3-40

10 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

default values
specifying CLI-I-10-6

default-callback-style (variable, ct package) FFI-I-3-7
defclass (example) CLI-I-13-3
defcstruct (macro, ct package) FFI-I-3-8
defctype (macro, ct package) FFI-I-3-9
defdefiner (macro, toploop package) PT-II-2-36, PT-II-3-5
defgeneric (example) CLI-I-13-2
defining macros CLI-I-11-2
definitions

operations on PT-II-3-29
deflhandle (macro, ct package) FFI-I-3-10
defmacro CLI-I-11-2
defmethod (example) CLI-I-13-2
defparameter

compared to defvar CLI-I-14-7
defshandle (macro, ct package) FFI-I-3-10
defstruct CLI-I-9-7

and typep CLI-I-9-8
defun CLI-I-2-4, CLI-I-10-1
defun-callback (macro, ct package) FFI-I-3-10
defun-c-callback (macro, ct package) FFI-I-3-10
defun-dll (macro, ct package) FFI-I-3-13
defvar

compared to defparameter CLI-I-14-7
dynamic scoping CLI-I-6-4

delete CLI-I-12-8
Delete (Edit menu choice) PT-II-3-9
Delete key PT-II-2-5
Delete Widget (widget pop-up menu item) IB-I-1-3
Delete Window (window pop-up menu Miscellaneous submenu item) IB-I-1-10
delete-definitions (function, toploop package) PT-II-2-35
delete-horizontal-space (function, text-edit package) PT-II-3-32
delete-indentation (function, text-edit package) PT-II-3-32
delete-line (function, text-edit package) PT-II-3-25
delete-mark (function, text-edit package) PT-II-3-36

ALLEGRO CL for Windows: General Index 11

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

delete-next-character (function, text-edit package) PT-II-3-21
delete-previous-character (function, text-edit package) PT-II-3-21
delete-sexp (function, text-edit package) PT-II-3-27
delete-to-kill-buffer (function, text-edit package) PT-II-3-33
delete-word (function, text-edit package) PT-II-3-23
deleting text

in Toploop window PT-II-2-5
descending order function, syntax and semantics of CLI-I-3-4
:describe (function) PT-II-3-39
destructiveness vs efficiency CLI-I-12-8
dialog box

for errors PT-II-2-15
Dialog boxes PT-II-2-14
dialog boxes

discussed GS-I-15
used with Allegro CL for Windows GS-I-15

dialog-item
means the same thing as widget IB-I-1-3

dialogs
saving code for generating IB-I-1-11

difference between two Enter keys GS-I-15
discarding elements of a list CLI-I-10-3
Display Selection (Search/Marks submenu choice) PT-II-3-13, PT-II-3-14
displaying using the Window menu PT-II-2-21
division CLI-I-3-2
division by zero CLI-I-14-5
DLL

16-bit DLL’s not supported under Windows or Windows NT FFI-I-2-4
dll-handle (function, ct package) FFI-I-3-18
do CLI-I-8-3
:documentation (function) PT-II-3-39
documentation

of Allegro CL for Windows GS-I-6
online CLI-I-p-2

dotted pair CLI-I-12-6, CLI-I-A-2
:double-float (c-type-spec) FFI-I-3-2

12 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

downcase-word (function, text-edit package) PT-II-3-23
down-list (function, text-edit package) PT-II-3-29
dynamic scoping CLI-I-6-4, CLI-I-A-2

E
e CLI-I-10-5
Edit menu

and the Clipboard window PT-II-2-26
Comment In/Out PT-II-3-16
Copy PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8
Cut PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8
Delete PT-II-3-9
Paste PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8
Pop PT-II-2-26
Select All PT-II-3-15
Undo PT-II-4-5
Undo to Before PT-II-4-5

Edit Menu Bar (window pop-up menu item) IB-I-1-11
edit mode IB-I-1-2
edit mode (in the Interface Builder)

defined IB-I-1-3
Edit On Form (widget pop-up menu item) IB-I-1-5
Edit On Form (window pop-up menu item) IB-I-1-11
edit-action (generic function, builder package) IB-I-1-21
edit-bitmap (function, inspector package) PT-II-4-17
edit-file (function, text-edit package) PT-II-3-43
editing

recursive operations concerned with PT-II-3-41
Editor

size limit GS-I-23
editor (text)

adding text PT-II-3-7
associating a package with text files PT-II-3-17
cancelling changes PT-II-3-3
closing a document PT-II-3-3
creating a new document PT-II-3-1

ALLEGRO CL for Windows: General Index 13

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

editor (text) (continued)
evaluating forms PT-II-3-14
finding text PT-II-3-10
inserting text PT-II-3-7
keybindings PT-II-A-1
marking text PT-II-3-12
opening a file PT-II-3-1
opening an existing document PT-II-3-1
printing a document PT-II-3-14
renaming a file PT-II-3-2
replacing text PT-II-3-11
saving a file PT-II-3-2
searching PT-II-3-10
transposing characters PT-II-3-9

efficiency vs destructiveness CLI-I-12-8
element CLI-I-A-2
embedded function CLI-I-A-5
end-of-definition (function, text-edit package) PT-II-3-30
end-of-file (function, text-edit package) PT-II-3-35
end-of-line (function, text-edit package) PT-II-3-24
Enter Debugger (dialog box button) PT-II-2-16
Enter key GS-I-15, PT-II-2-5

two Enter keys described GS-I-15
environment CLI-I-A-6
eql CLI-I-12-9
equal CLI-I-12-9

function CLI-I-7-2
used to compare cpointers FFI-I-3-20
used to compare handles FFI-I-3-20

equality CLI-I-3-5, CLI-I-12-9
equalp

used to compare cpointers FFI-I-3-20
used to compare handles FFI-I-3-20

erasing text
in Toploop window PT-II-2-5

error CLI-I-14-5

14 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

error dialog box PT-II-2-15
error messages CLI-I-14-1

user defined CLI-I-14-5
error messages, samples CLI-I-14-1
error on redefinition PT-II-3-6
errors CLI-I-14-1

dealing with PT-II-2-15
functions named in message may be unexpected PT-II-2-16

escape character CLI-I-A-3, CLI-I-A-5
eval CLI-I-5-3
eval-definition (function, text-edit package) PT-II-3-30
Evaluate (dialog box button) PT-II-2-25
Evaluate Clipboard (Tools menu choice) PT-II-2-26
evaluating forms in a Text Edit window PT-II-3-14
evaluating incomplete form (causing an error) PT-II-3-15
evaluating of input

variable for controlling PT-II-2-32
evaluation CLI-I-A-2

in Toploop window PT-II-2-14
evaluation of forms CLI-I-5-3
even CLI-I-3-5
evenp CLI-I-3-5
evenp function, syntax and semantics of CLI-I-3-5
event (generic function, comtab package) PT-II-9-5
event functions PT-II-9-4
event handlers

setting for widgets IB-I-1-9
event variables PT-II-9-5
event-number (variable, comtab package) PT-II-9-5
example files GS-I-20
examples

breakpoint PT-II-5-8
cg directory GS-I-21
dde directory GS-I-21
ext directory GS-I-21
ffi directory GS-I-21

ALLEGRO CL for Windows: General Index 15

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

examples (continued)
files supplied with Allegro CL for Windows GS-I-20
foreign function calls FFI-I-1-1
inspector PT-II-4-2
lang directory GS-I-21
metafile directory GS-I-22
profiling PT-II-5-10
runtime directory GS-I-21
structed directory GS-I-21
super-brackets PT-II-2-7

:exchange-to-mark (generic function) PT-II-3-37
execute-command (generic function, dde package) FFI-I-4-7
Exit

confirming PT-II-2-8
Exit (File menu choice) PT-II-2-8
exiting from the debugger PT-II-6-6
expanding macros CLI-I-11-2
exponential function, syntax and semantics of CLI-I-3-2
export-c-names (variable, ct package) FFI-I-3-18
expt function, syntax and semantics of CLI-I-3-2
ext (directory of examples) GS-I-21

F
FAQ (Frequently Asked Questions document for Allegro CL for Windows) GS-I-16
far-peek (function, ct package) FFI-I-3-18
far-poke (function, ct package) FFI-I-3-18
ffi (directory of examples) GS-I-21
file (function, text-edit package) PT-II-3-43
File menu

Choose Printer... PT-II-3-13
Close PT-II-2-8, PT-II-3-3
Compile... PT-II-2-4, PT-II-2-19
Exit PT-II-2-8
Images:Create Standalone Form PT-II-2-30
Images:Load Image... PT-II-2-29
Images:Save Image... PT-II-2-28

16 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

File menu (continued)
Load... PT-II-2-17
New PT-II-2-4, PT-II-3-1
Open... PT-II-3-1
Print PT-II-3-13
Print... PT-II-3-14
Print/Print... PT-II-3-14
Revert to Saved PT-II-3-3, PT-II-4-5
Save PT-II-3-2
Save As... PT-II-3-2, PT-II-3-3

filename length restriction GS-I-5
files

compiling PT-II-2-19
loading PT-II-2-17
operations concerned with loading and saving PT-II-3-43
operations on PT-II-3-35

filtering CLI-I-10-3, CLI-I-A-2
:find (generic function) PT-II-3-37
Find Again (Search menu choice) PT-II-3-11
Find Clipboard (Search menu choice) PT-II-3-11
Find Definition (Search menu choice) PT-II-3-4
Find Definition window PT-II-2-21, PT-II-3-4

editing the source PT-II-3-5
Find dialog box (for finding text) PT-II-3-10
Find Methods (widget pop-up menu item IB-I-1-2
Find Methods (window pop-up menu Miscellaneous submenu item) IB-I-1-10
Find... (Search menu choice) PT-II-3-10
find-applicable-method-definitions (function, toploop package) PT-II-2-35
:find-clipboard (generic function) PT-II-3-38
:find-definition (generic function) PT-II-3-40
finding a definition PT-II-3-4
finding text PT-II-3-10
find-method-definition (function, toploop package) PT-II-2-35
find-method-definition-from-name (function, toploop package) PT-II-2-35
:find-same (generic function) PT-II-3-38
find-start-of-comment (function, text-edit package) PT-II-3-30

ALLEGRO CL for Windows: General Index 17

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

find-symbol-definition (function, toploop package) PT-II-2-35
find-toploop-prompt (function, toploop package) PT-II-2-33
first CLI-I-4-1
flag-modified-text-windows-p (variable, text-edit package) PT-II-3-44
float CLI-I-3-4
float function for converting integers into floats, syntax and semantics of CLI-I-3-4
for CLI-I-8-4
foreign function interface

accessing a C string FFI-I-1-7
directory of examples GS-I-21
examples FFI-I-1-1

Foreign Function Interface (manual) GS-I-6
form CLI-I-A-2

definition of CLI-I-2-1
format (function)

don’t trace PT-II-5-4
formatting a document PT-II-3-15
forms

operations on PT-II-3-26
forward-character (function, text-edit package) PT-II-3-20
forward-list (function, text-edit package) PT-II-3-28
forward-sexp (function, text-edit package) PT-II-3-27
forward-up-list (function, text-edit package) PT-II-3-29
forward-word (function, text-edit package) PT-II-3-22
Franz Inc. (address and phone number) GS-I-26
free CLI-I-A-2
free variable CLI-I-6-1

compiler warning when setting CLI-I-14-6
free-storage-list CLI-I-12-3
funcall CLI-I-10-4
function CLI-I-10-1, CLI-I-A-2

access CLI-I-A-1
defining a CLI-I-2-3
tracing calls only to a specially tagged one PT-II-5-19
tracing calls to a PT-II-5-18
using as an argument CLI-I-10-4

18 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

function call
example CLI-I-1-2
syntax of CLI-I-1-2

function calls
tracing PT-II-5-18

function redefinition PT-II-3-6
function, turning off the tracing of every PT-II-5-19
functional error CLI-I-A-6
functions

profiling of PT-II-5-21

G
garbage collection CLI-I-12-9, CLI-I-A-2

cursor PT-II-1-8
gc CLI-I-12-9, CLI-I-A-2
General Index (manual) GS-I-6
generating symbols CLI-I-11-4
generic functions (discussed) CLI-I-13-1, CLI-I-13-2
gensym CLI-I-11-4
get CLI-I-9-2

with setf CLI-I-9-3
get-callback-procinst (function, ct package) FFI-I-3-19
get-dialog (function, builder package) IB-I-1-21
get-mark (function, text-edit package) PT-II-3-36
get-region (function, text-edit package) PT-II-3-33
getting help PT-II-1-4
Getting Started (manual) GS-I-6
get-widget (function, builder package) IB-I-1-20
get-window (function, builder package) IB-I-1-21
Graph subclasses (item on CLOS Tools submenu of Tools menu) PT-II-8-3
Graph superclasses (item on CLOS Tools submenu of Tools menu) PT-II-8-3

ALLEGRO CL for Windows: General Index 19

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

H
handle

comparing with equal FFI-I-3-20
comparing with equalp FFI-I-3-20
comparing with handle= FFI-I-3-20

handle= (macro, ct package) FFI-I-3-20
handle-value (macro, ct package) FFI-I-3-20
hangs GS-I-14
HeapSize (initialization parameter) GS-I-24
help PT-II-1-4

online CLI-I-p-2
Help menu

About Allegro CL PT-II-1-6
Manual Contents PT-II-1-7
Manual Entry PT-II-1-7
Quick Symbol Info PT-II-1-7

Help window PT-II-2-21
help-output (variable) PT-II-1-7
History (Windows menu choice) PT-II-2-22
History dialog

buttons PT-II-2-23
panes PT-II-2-23

history list PT-II-2-22
history of evaluation of forms

functions and variables pertaining to PT-II-2-34
History window PT-II-2-21
hnull (variable, ct package) FFI-I-3-21
how to create a dialog (or other window) with the IB IB-I-1-1
how to install GS-I-2
hung system (see interrupting lisp) PT-II-2-15

I
IB (abbreviation for Interface Builder) IB-I-1-1
ibprefs.lsp (IB preferences file) IB-I-1-5
.ico file IB-I-1-19

20 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

if CLI-I-7-3
if-then-else construct CLI-I-7-3
illegal-operation (function, comtab package) PT-II-9-3
image size

how to set GS-I-24
maximum GS-I-24

indentations
operations on, or concerning PT-II-3-31

indent-for-comment (function, text-edit package) PT-II-3-31
information about Allegro CL for Windows GS-I-16
inheritance (discussed) CLI-I-13-3
inherit-from (function, comtab package) PT-II-9-3
initargs CLI-I-13-4
initform CLI-I-13-4
initial package PT-II-2-3
initialization PT-II-2-1
initialization file PT-II-2-3
in-package (function) PT-II-2-22
input CLI-I-5-1

function to handle CLI-I-5-2
how to make easier to read CLI-I-1-3

insert-character (function, text-edit package) PT-II-3-21
insert-empty-list (function, text-edit package) PT-II-3-28
insert-empty-string (function, text-edit package) PT-II-3-42
inserting text

in a Text Edit window PT-II-3-7
insertion point

in Toploop window PT-II-2-5
Inside Programming Tools (manual) GS-I-6
:inspect (generic function) PT-II-3-41
inspect (function, common-lisp package) PT-II-4-16
Inspect (Tools menu choice) PT-II-4-5
Inspect Selected Object (Tools menu/Inspect submenu choice) PT-II-4-4
Inspect System Data (Tools menu Inspect submenu choice) PT-II-4-12
inspect-all-slots (variable, inspector package) PT-II-4-14
inspect-bitmap-as-array (variable, inspector package) PT-II-4-18

ALLEGRO CL for Windows: General Index 21

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

inspect-bit-vector-as-sequence (variable, inspector package) PT-II-4-18
inspected-object (function, inspector package) PT-II-4-22
inspecting bitmaps PT-II-4-9
inspecting system data PT-II-4-12
inspect-length (variable) PT-II-4-13
inspect-length (variable, inspector package) PT-II-4-17
inspect-list (variable, inspector package) PT-II-4-17
inspect-object (generic function, inspector package) PT-II-4-19
inspector PT-II-4-1

arrow keys PT-II-4-5
bringing up an inspector window PT-II-4-4
changing slot values to default PT-II-4-8
control variables for PT-II-4-17
example PT-II-4-2
inspecting bitmaps PT-II-4-9
inspecting system data PT-II-4-12
modifying slots PT-II-4-5
program interface to PT-II-4-16
preferences PT-II-4-12
print length (see *inspector-length*) PT-II-4-13
summary of usage PT-II-4-14
two main parts of PT-II-4-16
undoing modifications PT-II-4-5
using PT-II-4-2
which slots can be modified? PT-II-4-5

Inspector Manager
purpose of PT-II-4-16

Inspector Pane
purpose of PT-II-4-16

Inspector panes
operations on PT-II-4-22

Inspector window
arrow keys PT-II-4-5
changing slot values to default PT-II-4-8
displaying PT-II-4-4
inspecting bitmaps PT-II-4-9

22 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Inspectors
defining new PT-II-4-19

inspector-window-height (variable, inspector package) PT-II-4-29
inspector-window-height-factor (variable, inspector package) PT-II-4-29
inspector-window-width (variable, inspector package) PT-II-4-29
inspector-window-width-factor (variable, inspector package) PT-II-4-29
inspect-string-as-sequence (variable, inspector package) PT-II-4-18
inspect-structure-as-sequence (variable, inspector package) PT-II-4-18
inspect-with (function, inspector package) PT-II-4-20
inspect-with-slots (function, inspector package) PT-II-4-21
installation GS-I-2

filename length restriction GS-I-5
how to install Allegro CL for Windows GS-I-3
reinstallation GS-I-4

interface builder
ibprefs.lsp -- the preferences file IB-I-1-5
introduction IB-I-1-1
mouse actions IB-I-1-11
preferences dialog IB-I-1-6

interface builder dialogs
builder preferences IB-I-1-4
menu editor IB-I-1-4
widget editor IB-I-1-4
widget palette IB-I-1-4
window editor IB-I-1-4

Interface Builder Manual (manual) GS-I-6
Interface Builder Preferences (Preferences menu choice)

displays Interface Builder Preferences dialog IB-I-1-4
interrupting PT-II-2-15
interrupting Lisp GS-I-14, PT-II-2-15
Introducing CLI-I-5-1
Invoke Selected Restart (dialog box button) PT-II-2-16
italics CLI-I-1-3
iteration CLI-I-8-1, CLI-I-A-3

ALLEGRO CL for Windows: General Index 23

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

J
joining lists CLI-I-12-8

K
key CLI-I-A-3
keybindings for editor modes PT-II-A-1
kill-comment (function, text-edit package) PT-II-3-30
kill-line (function, text-edit package) PT-II-3-24
kill-sexp (function, text-edit package) PT-II-3-27
kill-word (function, text-edit package) PT-II-3-22

L
lambda CLI-I-10-1
lambda expression CLI-I-10-1, CLI-I-A-3
:lambda-list (generic function) PT-II-3-39
lang (directory of examples) GS-I-21
last CLI-I-4-3
let CLI-I-6-1
lexical scoping CLI-I-6-3, CLI-I-A-3
lines

operations on PT-II-3-24
Lisp

derivation of name CLI-I-1-1
interrupting GS-I-14
things to note GS-I-23
versions CLI-I-1-1

Lisp clipboard
and Windows clipboard PT-II-2-26
defined PT-II-2-24
max size (see also *lisp-clipboard-limit*) PT-II-2-24
size (see also *lisp-clipboard-limit*) PT-II-2-24

lisp environment
setting preferences PT-II-2-26

lisp.exe (Windows executable file used to start Allegro CL) PT-II-2-31
lisp-clipboard-limit (variable) PT-II-2-24

24 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

lisp-message (function, common-graphics package) PT-II-2-13, PT-II-2-37
lisp-message-print-length (variable, common-graphics package) PT-II-2-13, PT-II-2-38
lisp-message-print-level (variable, common-graphics package) PT-II-2-13, PT-II-2-38
lisp-status-bar-font (variable, toploop package) PT-II-2-38
lisp-status-bar-number-of-lines (variable, toploop package) PT-II-2-38
list CLI-I-4-5

add an item to the front of a CLI-I-2-3
adding to and removing from a CLI-I-2-3
definition of CLI-I-2-1
delete an item from a CLI-I-2-3
function that substitutes one element of a list for another CLI-I-4-4
function to add an item to the front of a CLI-I-4-4
function to extract first element of a CLI-I-4-1
function to extract last element of a CLI-I-4-3
function to extract nth element of a CLI-I-4-2
functions that combine one with another CLI-I-4-4
modifying CLI-I-12-4
storage CLI-I-12-1
surgery CLI-I-A-6

list function, syntax and semantics of CLI-I-4-5
list structure CLI-I-12-3
list-dll-libraries (function, ct package) FFI-I-3-21
listp

function CLI-I-7-1
lists

operations on PT-II-3-28
list-to-tabbed-string (function, dde package) FFI-I-4-10
literal expression CLI-I-A-3
load (function) PT-II-2-4, PT-II-2-18
Load Image... (File menu Images submenu item) PT-II-2-29
Load... (File menu choice) PT-II-2-17
load-file (function, text-edit package) PT-II-3-43
loading files PT-II-2-17
log CLI-I-3-3, CLI-I-10-5
logarithm CLI-I-3-3
logical operators CLI-I-7-3

ALLEGRO CL for Windows: General Index 25

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

:long (c-type-spec) FFI-I-3-1
:long-bool (c-type-spec) FFI-I-3-2
:long-handle (c-type-spec) FFI-I-3-2
loop CLI-I-8-2

M
macroexpand-1 CLI-I-11-2
macroexpansion CLI-I-11-1, CLI-I-A-3
macros CLI-I-11-1, CLI-I-A-3

defining CLI-I-11-2
expanding CLI-I-11-2
vs functions CLI-I-11-1

make-
structure constructor function CLI-I-9-8

make-array CLI-I-9-5
make-comtab (function, comtab package) PT-II-9-2
make-instance CLI-I-13-4

example CLI-I-13-4
make-mark (function, text-edit package) PT-II-3-35
making a list CLI-I-4-5
managing windows PT-II-2-21
manual

where to find things PT-II-1-1
Manual Contents

Help menu item PT-II-1-7
Manual Entry

Help menu item PT-II-1-7
manuals GS-I-6

change bars GS-I-9
Common Lisp Introduction GS-I-6
Foreign Function Interface GS-I-6
General Index GS-I-6
Getting Started GS-I-6
Inside Programming Tools GS-I-6
Interface Builder Manual GS-I-6
Online Manual GS-I-7

26 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

manuals (continued)
pictures in GS-I-8
Professional supplement GS-I-7
Read This First GS-I-6
Runtime Generator (in Professional supplement) GS-I-7

mapcar CLI-I-10-1
and functions of more than one argument CLI-I-10-2
examples CLI-I-10-2
simple version CLI-I-10-5

mapping CLI-I-A-3
:mark (generic function) PT-II-3-36
marking text PT-II-3-12
mark-p (function, text-edit package) PT-II-3-36
mark-position (function, text-edit package) PT-II-3-36
marks

operations on PT-II-3-35
Marks (Search menu submenu) PT-II-3-12
max CLI-I-3-5
maximize button (in a window) GS-I-12
maximum CLI-I-3-5
max-symbol-completion-choices (variable, text-edit package) PT-II-3-46
member CLI-I-12-10

function CLI-I-7-2
memory CLI-I-12-3
memory management CLI-I-12-9
menu bar GS-I-10, PT-II-2-9
menu bars

are only visible on top-level windows IB-I-1-4
menu editor

Interface Builder dialog IB-I-1-4
menu items

selecting with Alt key GS-I-13
menus

Allegro CL for Windows menus GS-I-13
editing IB-I-1-12
keyboard equivalents GS-I-13

ALLEGRO CL for Windows: General Index 27

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

menus (continued)
right button menu IB-I-1-1
right-button-menu over objects PT-II-1-4
right button menu over widgets IB-I-1-2
right button over windows IB-I-1-5
selecting items with Alt key GS-I-13

metafile (directory of examples) GS-I-22
method (discussed) CLI-I-13-2
method combination CLI-I-13-8
methods

after CLI-I-13-8
around CLI-I-13-8
before CLI-I-13-8

MicroSoft Windows (operating system) GS-I-12
min CLI-I-3-5
minimize button (in a window) GS-I-12
minimum CLI-I-3-5
minus CLI-I-3-5
minusp CLI-I-3-5
minusp function, syntax and semantics of CLI-I-3-5
Miscellaneous (window pop-up menu item) IB-I-1-10
:modified-p (generic function) PT-II-3-42
modifying lists CLI-I-12-4
mouse actions

in Interface Builder IB-I-1-11
moving text PT-II-3-9
MS Windows (operating system) GS-I-12
multiple escape characters CLI-I-A-3
multiple values CLI-I-A-4
multiplication CLI-I-3-2
mutator CLI-I-A-5

28 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

N
nconc CLI-I-12-8
negative, function to test if a number is CLI-I-3-5
nested expression CLI-I-A-6
New (File menu choice) PT-II-2-4, PT-II-3-1
newline (function, text-edit package) PT-II-3-26
newline-and-indent (function, text-edit package) PT-II-3-31
next-line (function, text-edit package) PT-II-3-25
next-page (function, text-edit package) PT-II-3-34
no response (see interrupting lisp) PT-II-2-15
no response, what to do GS-I-14
notation used in text PT-II-1-2
nth CLI-I-4-2
null

function CLI-I-7-2
null (variable, common-lisp package package) FFI-I-3-21
null-cpointer-p (macro, ct package) FFI-I-3-21
null-handle (macro, ct package) FFI-I-3-22
null-handle-p (macro, ct package) FFI-I-3-22
number

types of CLI-I-2-1
number-of-lines-in-window (function, text-edit package) PT-II-3-34
numberp

function CLI-I-7-1
numbers CLI-I-A-4

O
Object Name (widget pop-up menu item) IB-I-1-2
Object Name (window pop-up menu item) IB-I-1-5
object oriented programming (in CLOS) CLI-I-13-1
odd CLI-I-3-5
odd, function to test if a number is CLI-I-3-5
oddp CLI-I-3-5
Online Manual GS-I-7, CLI-I-p-2, PT-II-1-7
Open... (File menu choice) PT-II-3-1

ALLEGRO CL for Windows: General Index 29

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

opening a document (in text editor) PT-II-3-1
open-line (function, text-edit package) PT-II-3-26
open-port (function, dde package) FFI-I-4-3
open-server (function, dde package) FFI-I-4-6
&optional CLI-I-10-6
optional arguments CLI-I-10-5

default values CLI-I-10-6
or CLI-I-7-3
order, descending, function, syntax and semantics of CLI-I-3-4
output CLI-I-5-1

function to perform CLI-I-5-1
output a carriage return, how to CLI-I-5-5

P
packages

associating with Text Edit window PT-II-3-17
changing PT-II-2-22

Packages menu PT-II-2-22
panes

operations on PT-II-3-34
parentheses

closing PT-II-2-14
super PT-II-2-14

Paste (Edit menu choice) PT-II-2-24, PT-II-2-26, PT-II-3-9, PT-II-4-8
patches (fixes to Allegro CL) GS-I-16

always grab all available patches GS-I-19
creating an image with patches loaded GS-I-17
do not use patches from release 2.0 GS-I-25
how to get GS-I-16
replacing patches that are defective GS-I-18
saved images do not load patches GS-I-17
telling what patches have been loaded GS-I-18
updating patches GS-I-18
what they are GS-I-16
when they are loaded GS-I-17
where to put patch files GS-I-17

30 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Pause key (see Break key) PT-II-2-15
picture-button

saving associated bitmap IB-I-1-19
pictures

saving bitmaps IB-I-1-19
places

tracing PT-II-5-7
plist CLI-I-9-2, CLI-I-A-4
pointers CLI-I-12-1
Pop (dialog box button) PT-II-2-25
Pop (Edit menu choice) PT-II-2-26
port-application (function, dde package) FFI-I-4-2
port-name (function, dde package) FFI-I-4-2
port-open-p (function, dde package) FFI-I-4-3
port-topic (function, dde package) FFI-I-4-2
post-advice (function, dde package) FFI-I-4-9
predicates CLI-I-3-4, CLI-I-A-4
preferences PT-II-2-26

defined PT-II-2-26
inspector PT-II-4-12

Preferences menu PT-II-2-26
Save Preferences... PT-II-2-4

prefs.fsl (file) PT-II-2-4
prefs.lsp (file) PT-II-2-4

creating PT-II-2-4
Pretty Print (Tools menu choice) PT-II-3-16
pretty-printing CLI-I-A-6
pretty-print-region (function, text-edit package) PT-II-3-33
previous-line (function, text-edit package) PT-II-3-25
previous-page (function, text-edit package) PT-II-3-35
primary method CLI-I-13-9
primitive CLI-I-A-6
prin1 CLI-I-5-5
prin1 function, syntax and semantics of CLI-I-5-5
princ CLI-I-5-5

ALLEGRO CL for Windows: General Index 31

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

print CLI-I-5-1
function to print without starting with a new line CLI-I-5-5
without escape characters CLI-I-5-5
without newlines CLI-I-5-5

print a carriage return, how to CLI-I-5-5
print function, syntax and semantics of CLI-I-5-1
print special characters, how to CLI-I-5-4
Print... (File menu choice) PT-II-3-14
Print... (File/Print submenu choice) PT-II-3-14
print-case (variable) PT-II-3-16
Printer Setup... (File/Print submenu choice) PT-II-3-14
printing

choosing a printer PT-II-3-13
from Allegro CL PT-II-3-13
variable controlling PT-II-2-32
variable controlling max. depth to which results of evaluation are printed PT-II-2-32
variable controlling max. length to which results of evaluation are printed PT-II-2-32

printing a document PT-II-3-14
procedure CLI-I-A-6
process-pending-events (function, common-graphics package)

should be called within cpu-intensive loops GS-I-14
Professional supplement manual GS-I-7
Professional version GS-I-4, GS-I-5

incompatible with Standard version) GS-I-25
Professional version of Allegro CL for Windows GS-I-3, GS-I-4, GS-I-7, GS-I-18, GS-I-21
:profile (generic function) PT-II-3-40
profile PT-II-5-1, PT-II-5-10

and garbage collection PT-II-5-14
counter values PT-II-5-4
example PT-II-5-10
interpreting results PT-II-5-13
overheads PT-II-5-14
profiling what you want PT-II-5-16
starting PT-II-5-11

profile (macro, allegro package) PT-II-5-21, PT-II-5-11
Profile (Tools menu choice) PT-II-5-16

32 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

profile facility
operations concerning PT-II-3-40

profilef place (macro, allegro package) PT-II-5-21
profilef-reset (macro, allegro package) PT-II-5-22
profilef-results (macro, allegro package) PT-II-5-22
profile-reset (macro, allegro package) PT-II-5-22
profile-results (macro, allegro package) PT-II-5-22
profiling PT-II-5-10
profiling of functions PT-II-5-21
progn CLI-I-7-5
program icon (in a window, left clicking displays a menu) GS-I-12
programs

are usually called "functions" in Lisp CLI-I-1-2
programs and data CLI-I-1-2
prompt

finding a new prompt PT-II-2-6
in Toploop window PT-II-2-5
variable controlling PT-II-2-32

property CLI-I-9-2, CLI-I-A-4
modifying CLI-I-9-3
removing CLI-I-9-4
retrieving CLI-I-9-2, CLI-I-9-4

property list CLI-I-9-2, CLI-I-A-4
property value CLI-I-A-4
push CLI-I-11-1

Q
Quick Symbol Info

Help menu item PT-II-1-7
quick-lambda-list (function, text-edit package) PT-II-3-44
quick-lambda-list-and-insert-space (function, text-edit package) PT-II-3-45
Quit (see Exit) PT-II-2-8
quitting of a Lisp application

variable controlling the PT-II-2-33
quote CLI-I-4-3
quote function, syntax and semantics of CLI-I-4-3

ALLEGRO CL for Windows: General Index 33

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

R
read CLI-I-5-1
read (function)

and Toploop window PT-II-2-15
read function, syntax and semantics of CLI-I-5-2
Read This First (manual) GS-I-6
reading

variable controlling PT-II-2-32
read-region (function, text-edit package) PT-II-3-33
receive-advice (generic function, dde package) FFI-I-4-5
receive-value (generic function, dde package) FFI-I-4-10
recursion CLI-I-8-1, CLI-I-8-5, CLI-I-A-4

tail CLI-I-A-6
redefinition of a Lisp object PT-II-3-7
redefinition of a system function PT-II-3-7
redefinition warnings PT-II-3-6
redisplay-inspector-window (function, inspector package) PT-II-4-22
reformatting a document PT-II-3-15
regions in Text Editor windows

operations on PT-II-3-32
reindent-line (function, text-edit package) PT-II-3-31
reindent-region (function, text-edit package) PT-II-3-33
reindent-sexp (function, text-edit package) PT-II-3-31
reinstallation GS-I-4
rem CLI-I-3-4
rem function, syntax and semantics of CLI-I-3-4
remainder CLI-I-3-4
remainder function, syntax and semantics of CLI-I-3-4
remove CLI-I-12-8
remove function, syntax and semantics of CLI-I-2-3
remove-if CLI-I-10-3
remove-if-not CLI-I-10-3
remove-method (example) CLI-I-13-9
remprop CLI-I-9-4
rename-dll-libraries (function, ct package) FFI-I-3-22

34 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

renaming a file PT-II-3-2
:replace (generic function) PT-II-3-38
Replace Again (Search menu choice) PT-II-3-12
Replace dialog box (for replacing text) PT-II-3-11
Replace... (Search menu choice) PT-II-3-11, PT-II-3-12
:replace-same (generic function) PT-II-3-38
replacing

text in Text edit windows PT-II-3-11
Reposition (widget pop-up menu item) IB-I-1-4
&rest CLI-I-10-6
rest CLI-I-4-1
return CLI-I-8-4
Revert to Saved (File menu choice) PT-II-3-3, PT-II-4-5
:revert-to-saved (generic function) PT-II-3-41
right mouse button

cannot be used to choose menu items in IB IB-I-1-4
round CLI-I-3-3
round function, syntax and semantics of CLI-I-3-3
rplaca CLI-I-12-7
rplacd CLI-I-12-8
run mode IB-I-1-4
run mode (in the Interface Builder)

defined IB-I-1-3
Run Window (window pop-up menu item) IB-I-1-11
runtime (directory of examples) GS-I-21
Runtime Generator

directory of examples GS-I-21
Runtime Generator (manual) GS-I-7

S
:save (function) PT-II-3-44
save

unsaved text-edit windows have * in the title PT-II-3-44
Save (File menu choice) PT-II-3-2
Save As dialog box (for saving files) PT-II-3-2
Save As... (File menu choice) PT-II-3-2, PT-II-3-3

ALLEGRO CL for Windows: General Index 35

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Save Image... (File menu Images submenu item) PT-II-2-28
Save Preferences... (Preferences menu choice) PT-II-2-4
save-file (function, text-edit package) PT-II-3-43
saving

a file PT-II-3-2
work (see Save Image...) PT-II-2-28

saving code for edited window IB-I-1-11
scope CLI-I-6-3, CLI-I-A-4
scoping

dynamic CLI-I-A-2
lexical CLI-I-6-3, CLI-I-A-3

scroll bar (in a window) GS-I-12
scroll-one-line-down (function, text-edit package) PT-II-3-34
scroll-one-line-up (function, text-edit package) PT-II-3-34
Search menu

Find Again PT-II-3-11
Find Clipboard PT-II-3-11
Find Definition PT-II-3-4
Find... PT-II-3-10
Marks PT-II-3-12
Replace Again PT-II-3-12
Replace... PT-II-3-11, PT-II-3-12

Select All (Edit menu choice) PT-II-3-15
Select to Mark (Search/Marks submenu choice) PT-II-3-13
select-all (function, text-edit package) PT-II-3-33
select-current-word (function, text-edit package) PT-II-3-24
selecting text PT-II-3-8
Selection (item from Evaluate submenu of Tools menu) PT-II-3-14, PT-II-3-15
selector CLI-I-A-5
:select-to-mark (generic function) PT-II-3-36
send-command (function, dde package) FFI-I-4-3
send-request (function, dde package) FFI-I-4-4
send-value (function, dde package) FFI-I-4-5
sentinel value CLI-I-A-6
sequence-structure-slots-settable (variable, inspector package) PT-II-4-18
serial number GS-I-3

36 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

server-active-p (variable, dde package) FFI-I-4-6
service-name (variable, dde package) FFI-I-4-5
service-topics (variable, dde package) FFI-I-4-6
session-init-fns (variable) PT-II-2-4
Set Attribute (widget pop-up menu item) IB-I-1-3
Set Attribute (window pop-up menu item) IB-I-1-8
Set Mark

(menu item on Search/Marks submenu) PT-II-3-12
Set Parent Window (window pop-up menu Miscellaneous submenu item) IB-I-1-10
set-comtab (function, comtab package) PT-II-9-2
set-event-function (function, comtab package) PT-II-9-4
setq CLI-I-A-6
set-region (function, text-edit package) PT-II-3-32
set-value-fn

why it is important IB-I-1-3
shared slot CLI-I-13-11
:short (c-type-spec) FFI-I-3-1
:short-bool (c-type-spec) FFI-I-3-2
shortcuts

Text Edit PT-II-3-18
:short-handle (c-type-spec) FFI-I-3-2
side effect CLI-I-A-4
single escape character CLI-I-A-5
:single-float (c-type-spec) FFI-I-3-2
size limit

in Text edit windows (32K) PT-II-3-2
sizeof (macro, ct package) FFI-I-3-22
slot (discussed) CLI-I-13-3
slot-value (example) CLI-I-13-5
slot-value pair PT-II-4-16
sort-inspected-slots (variable, inspector package) PT-II-4-14
source code

functions pertaining to finding PT-II-2-35
variables controlling the finding of PT-II-2-35

ALLEGRO CL for Windows: General Index 37

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

source file
finding a definition PT-II-3-4
opening PT-II-3-1

special variable CLI-I-6-4, CLI-I-A-5
specifying default values CLI-I-10-6
sqrt CLI-I-3-2
square root CLI-I-3-2
stack frames PT-II-6-1

examining PT-II-6-5
labels PT-II-6-8

stack-browser-window-height (variable, debugger package) PT-II-6-12
stack-browser-window-left (variable, debugger package) PT-II-6-11
stack-browser-window-top (variable, debugger package) PT-II-6-12
stack-browser-window-width (variable, debugger package) PT-II-6-12
Standard version GS-I-5

incompatible with Professional version) GS-I-25
Standard version of Allegro CL for Windows GS-I-3, GS-I-4
Starting Lisp PT-II-2-1
starting lisp PT-II-2-1
starting profiling PT-II-5-11
starting tracing PT-II-5-3
starting up PT-II-2-1
startup file PT-II-2-3
startup.fsl (file) PT-II-2-4
startup.lsp (file) PT-II-2-4

creating PT-II-2-4
large files PT-II-2-4

static-picture
saving associated bitmaps IB-I-1-19

status bar GS-I-11, PT-II-2-37
changing font PT-II-2-13
changing number of lines displayed PT-II-2-13
described PT-II-2-12
essential when using the IB IB-I-1-3

step (macro) PT-II-7-1, PT-II-7-7
and stepper window GS-I-24

38 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Step Control Window (same as Stepper window) PT-II-7-2
stepper PT-II-7-1

aborting stepping PT-II-7-4
and recursive functions PT-II-7-7
and Toploop window PT-II-7-5
ending stepping PT-II-7-4
entering the debugger PT-II-7-7
finding out what called step PT-II-7-8
finishing stepping PT-II-7-4
saving window contents PT-II-7-7
skipping expressions PT-II-7-5
Stepper window PT-II-7-2
stepping forward PT-II-7-5
stepping through a form PT-II-7-1
using when not at the top level PT-II-7-7

Stepper window PT-II-7-2
saving PT-II-7-7

sticky alignment of widgets IB-I-1-6
Stop (see Exit) PT-II-2-8
stopping computation PT-II-2-15
storage of lists CLI-I-12-1
string

accessing a C string FFI-I-1-7
string-replace (function, text-edit package) PT-II-3-37
string-search (function, text-edit package) PT-II-3-37
strlen (function, ct package) FFI-I-3-23
structed (directory of examples) GS-I-21
structure CLI-I-9-7
subst CLI-I-4-4, CLI-I-12-10
subst function, syntax and semantics of CLI-I-4-4
subtraction CLI-I-3-1
sum of squares CLI-I-10-7
super-brackets (defined) PT-II-2-7, PT-II-2-14
superclass CLI-I-13-7
super-parenthesis CLI-I-2-5
support (availability of) GS-I-26

ALLEGRO CL for Windows: General Index 39

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Swap with Mark (Search/Marks submenu choice) PT-II-3-12
symbol CLI-I-A-5

conventions used in this manual CLI-I-1-3
definition of CLI-I-2-1
how to define a string as a CLI-I-5-4

symbol completion PT-II-2-6
symbol-completion-searches-all-packages (variable, allegro package) PT-II-2-6
symbolp

function CLI-I-7-1
symbol-plist CLI-I-9-4
symbols

operations that provide information about PT-II-3-38
sysitems (variable, dde package) FFI-I-4-6
system hanging (what to do) GS-I-14

T
tail recursion CLI-I-A-6
temporary variable CLI-I-6-1
terminal-io PT-II-2-32
terpri

print a carriage return CLI-I-5-5
text

operations concerned with searching and replacing PT-II-3-37
Text Edit window

associating a package with PT-II-3-17
comments PT-II-3-16
evaluation PT-II-3-14
package associated with PT-II-3-17
reformatting PT-II-3-15
size limit (32K) PT-II-3-2

Text editor
32K file size limit GS-I-23
adding text PT-II-3-7
cancelling changes PT-II-3-3
closing a document PT-II-3-3
creating a new document PT-II-3-1

40 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Text editor (continued)
finding a definition PT-II-3-4
finding text PT-II-3-10
finding the source PT-II-3-5
inserting text PT-II-3-7
keybindings PT-II-A-1
marking text PT-II-3-12
opening a file PT-II-3-1
opening a new document PT-II-3-1
opening an existing document PT-II-3-1
printing a document PT-II-3-14
renaming a file PT-II-3-2
replacing text PT-II-3-11
saving a file PT-II-3-2
searching PT-II-3-10
size limit GS-I-23
transposing characters PT-II-3-9

Text editor (chapter 3) PT-II-3-1
Text window

copying text PT-II-3-9
moving text PT-II-3-9
selecting text PT-II-3-8

textual scoping CLI-I-6-3, CLI-I-A-5
32K size limit for text and structure editor files GS-I-23
time (variable, comtab package) PT-II-9-6
timing information

how to obtain PT-II-5-21
Toggle Status Bar

menu item on menu displayed by choosing Toolbar/Status Bar from Tools menu
PT-II-2-13

Toggle Toolbar
menu item on menu displayed by choosing Toolbar/Status Bar from Tools menu

PT-II-2-10
toolbar GS-I-10, PT-II-2-10

described PT-II-2-10
displaying and hiding PT-II-2-10, PT-II-2-13

ALLEGRO CL for Windows: General Index 41

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

toolbar (continued)
editing with toolbar palette PT-II-2-11
F11 key displays and hides PT-II-2-10, PT-II-2-13
in edit mode when toolbar palette is displayed PT-II-2-11

Toolbar Palette
menu item on menu displayed by choosing Toolbar/Status Bar from Tools menu

PT-II-2-11
Toolbar/Status Bar

menu item on Tools menu PT-II-2-10, PT-II-2-13
Tools menu

Build Call PT-II-1-8
Change Case PT-II-3-16
CLOS Tools PT-II-8-1
CLOS Tools:Browse Generic function PT-II-8-4
CLOS Tools:Graph subclasses PT-II-8-3
CLOS Tools:Graph superclasses PT-II-8-3
CLOS Tools:Browse Class PT-II-8-2
Evaluate Clipboard PT-II-2-26
Evaluate:Selection PT-II-3-14, PT-II-3-15
Inspect PT-II-4-4, PT-II-4-5
Inspect System data PT-II-4-12
Pretty Print PT-II-3-16
Toolbar/Status Bar item PT-II-2-10, PT-II-2-13

top-eval (variable, toploop package) PT-II-2-32
top-history-count (variable, toploop package) PT-II-2-34
top-history-limit (variable, toploop package) PT-II-2-23, PT-II-2-34
top-history-list (variable, toploop package) PT-II-2-34
top-level element CLI-I-A-5
top-level (variable, toploop package) PT-II-2-33
Toploop PT-II-2-2
toploop CLI-I-5-1, CLI-I-5-3, CLI-I-14-1, CLI-I-A-5
toploop (function) PT-II-2-3
toploop (function, toploop package) PT-II-2-37
toploop prompt

finding a new one PT-II-2-6
Toploop variables PT-II-2-31

42 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Toploop window GS-I-11
and stepping PT-II-7-5
as a Text Edit window PT-II-2-5
cannot type to while stepping PT-II-7-5
closing PT-II-2-5, PT-II-2-8
copying down text PT-II-2-14
deleting text PT-II-2-5
erasing text PT-II-2-5
evaluating PT-II-2-14
example CLI-I-1-2
illustrated PT-II-2-3
prompt PT-II-2-5
text insertion point PT-II-2-5
typing to PT-II-2-5

toploop-comtab (variable, toploop package) PT-II-2-33
toploop-window (variable, toploop package) PT-II-2-32
top-print (variable, toploop package) PT-II-2-32
top-print-length (variable, allegro package) PT-II-2-32
top-print-level (variable, allegro package) PT-II-2-32
top-prompt (variable, toploop package) PT-II-2-32
top-push-history (function, toploop package) PT-II-2-34
top-query-exit (variable) PT-II-2-8
top-query-exit (variable, toploop package) PT-II-2-33
top-read (variable, toploop package) PT-II-2-32
top-replace-history (function, toploop package) PT-II-2-34
:trace (generic function) PT-II-3-40
trace PT-II-5-1

args (variable) PT-II-5-5
call-count (variable) PT-II-5-5
call-depth (variable) PT-II-5-5
conditional PT-II-5-5
counter values PT-II-5-4
don’t trace certain functions PT-II-5-4
ending tracing PT-II-5-5
infinite loops PT-II-5-4
output (where it goes) PT-II-5-4

ALLEGRO CL for Windows: General Index 43

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

trace (continued)
print length PT-II-5-4
print level PT-II-5-4
removing tracing PT-II-5-5
simple tracing PT-II-5-2
starting PT-II-5-3
tracing many things PT-II-5-6
tracing places PT-II-5-7
untracing places PT-II-5-8

trace (macro, common-lisp package) PT-II-5-4, PT-II-5-18
Trace (Tools menu choice) PT-II-5-16
trace facility

operations concerning PT-II-3-40
trace function, syntax and semantics of PT-II-5-18
tracef (macro, allegro package) PT-II-5-7, PT-II-5-19
tracef function, syntax and semantics of PT-II-5-19
trace-print-length (variable) PT-II-5-4
trace-print-length (variable, allegro package) PT-II-5-18
trace-print-length (variable, allegro package) PT-II-5-18
trace-print-level (variable) PT-II-5-4
trace-print-level (variable, allegro package) PT-II-5-18
tracing of functions, how to turn off PT-II-5-19
transposing characters PT-II-3-9
transpose-characters (function, text-edit package) PT-II-3-21
truncate CLI-I-3-3
typep

and defstruct CLI-I-9-8

U
unbound CLI-I-A-2
unbound variable CLI-I-6-1
:unbreakpoint (generic function) PT-II-3-41
unbreakpoint (macro, allegro package) PT-II-5-20
unbreakpointf (macro, allegro package) PT-II-5-10, PT-II-5-20
:undo (generic function) PT-II-3-41
Undo (Edit menu choice) PT-II-4-5

44 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

Undo (widget pop-up menu item) IB-I-1-5
Undo (window pop-up menu Miscellaneous submenu item) IB-I-1-10
Undo to Before (Edit menu choice) PT-II-4-5
Uninstall (program for uninstalling Allegro CL for Windows) GS-I-5
unless CLI-I-7-5
unlink-dll (function, ct package) FFI-I-3-23
unlink-dll-functions (function, ct package) FFI-I-3-23
:unprofile (generic function) PT-II-3-41
unprofile (macro, allegro package) PT-II-5-22
unprofilef (macro, allegro package) PT-II-5-22
:unsigned-char (c-type-spec) FFI-I-3-1
:unsigned-long (c-type-spec) FFI-I-3-2
:unsigned-short (c-type-spec) FFI-I-3-1
:untrace (generic function) PT-II-3-40
untrace (macro, common-lisp package) PT-II-5-5, PT-II-5-19
untracef (macro, allegro package) PT-II-5-8, PT-II-5-19
unwatch (macro) PT-II-7-9
upcase-word (function, text-edit package) PT-II-3-23
user defined error messages CLI-I-14-5
using functions as arguments CLI-I-10-4

V
variable

compiler warning when setting a free variable CLI-I-14-6
free CLI-I-6-1
special CLI-I-A-5
temporary CLI-I-6-1
unbound CLI-I-6-1

variable-browser-max-width (variable, debugger package) PT-II-6-11
variable-browser-min-height (variable, debugger package) PT-II-6-11
variable-browser-min-width (variable, debugger package) PT-II-6-11
variable-browser-offset (variable, debugger package) PT-II-6-11
:void (s-type-spec) FFI-I-3-1

ALLEGRO CL for Windows: General Index 45

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

W
warnings

attempt to set non-special free variable CLI-I-14-6
watch facility PT-II-7-1, PT-II-7-8

stopping watching PT-II-7-9
unwatching PT-II-7-9
updating programmatically PT-II-7-10
watching places PT-II-7-8
what can be watched PT-II-7-8

watch-print (function) PT-II-7-10
what to do if system hangs GS-I-14
when CLI-I-7-5
widget

event handlers, setting IB-I-1-9
means the same thins as dialog-item IB-I-1-3

widget (function, common-graphics package) IB-I-1-22
widget editor

Interface Builder dialog IB-I-1-4
Widget Groups (window pop-up menu item) IB-I-1-6
widget palette

Interface Builder dialog IB-I-1-4
widget pop-up menu IB-I-1-2

Clone Widget IB-I-1-2
Copy Attribute IB-I-1-4
Delete Widget IB-I-1-3
Edit On Form IB-I-1-5
Find Methods IB-I-1-2
Object Name IB-I-1-2
Reposition IB-I-1-4
Set Attribute IB-I-1-3
Undo IB-I-1-5

widgets
sticky alignment IB-I-1-6

Win32s (upgrade to MS Windows 3.1, needed for ALLegro CL) GS-I-2
installing GS-I-2

46 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

window
typical Allegro CL for Windows window illustrated GS-I-12

window (function, common-graphics package) IB-I-1-22
window editor

Interface Builder dialog IB-I-1-4
Window menu PT-II-2-21
window pop-up menu IB-I-1-5

Add Widget IB-I-1-6
Clone Window (on Miscellaneous submenu) IB-I-1-10
Code IB-I-1-8
Delete Window (Miscellaneous submenu) IB-I-1-10
Edit Menu Bar IB-I-1-11
Edit On Form IB-I-1-11
Find Methods (Miscellaneous submenu) IB-I-1-10
Miscellaneous IB-I-1-10
Object Name IB-I-1-5
Run Window IB-I-1-11
Set Attribute IB-I-1-8
Set Parent Window (Miscellaneous submenu) IB-I-1-10
Undo (Miscellaneous submenu) IB-I-1-10
Widget Groups IB-I-1-6

windows PT-II-2-21
editing IB-I-1-14

Windows 3.1 (Allegro CL for Windows and) GS-I-2
Windows 95 (Allegro CL for Windows and) GS-I-2
Windows APIs FFI-I-5-2
Windows clipboard PT-II-2-26
Windows for Workgroups (Allegro CL for Windows and) GS-I-2
Windows menu PT-II-2-21

Clipboard PT-II-2-24
History PT-II-2-22

Windows NT (Allegro CL for Windows and) GS-I-2
Windows operating system

features described GS-I-12
Windows typedefs FFI-I-5-1

ALLEGRO CL for Windows: General Index 47

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

words
operations on PT-II-3-22

work
saving (see Save Image...) PT-II-2-28

World Wide Web page GS-I-16
URL address (http://www.franz.com) GS-I-16

WWW page GS-I-16

Y
yank-from-kill-buffer (function, text-edit package) PT-II-3-34

Z
zero CLI-I-3-6
zero-dimensioned array CLI-I-9-5
zerop CLI-I-3-6

48 ALLEGRO CL for Windows: General Index

CLI - Common Lisp Intro (I) FFI - Foreign Function Interface (I)
GS - Getting Started (I) IB - Interface Builder (I)
PT - Programming Tools Intro (II)

[This page intentionally left blank.]

Debugge

Allegro CL for
Windows

Professional
Supplement

version 3.0

October, 1995

Copyright and other notices:

This is revision 0 (initial version) of this manual. This manual has Franz Inc. document
number D-U-00-PC0-09-51020-3-0.

Copyright 1992, 1994, 1995 by Franz Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, by photocopying or recording, or otherwise, without the
prior and explicit written permission of Franz Incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government
are subject to Restricted Rights for Commercial Software developed at private expense as
specified in DOD FAR 52.227-7013 (c) (1) (ii).

Allegro CL is a registered trademarks of Franz Inc.

Allegro CL for Windows is a trademark of Franz Inc.

Windows, MS Windows, MS-DOS, and DOS are trademarks of Microsoft.

Franz Inc.
1995 University Avenue

Berkeley, CA 94704
U.S.A.

ALLEGRO CL for Windows: Professional Supplement c - 1

Contents

1 Introduction to the Professional version

2 Support and source code
2.1 Support 2-1

Send in the Source Code and Support addendum 2-1
Contacting by telephone or FAX 2-1
Best way to contact: e-mail to pc-support@franz.com 2-2
A pcspr # 2-2
How to report a bug or problem 2-3

2.2 Source code 2-5
Send in the Source Code and Support addendum 2-5
What sources are distributed 2-5
Do not load the source files 2-5

3 Sockets and Grid Widget
3.1 Socket interface 3-1

You must load socket.fsl 3-1
Files in the distribution 3-1
winsock.dll is needed 3-2
sockaux.dll must be distributed with applications 3-2

3.2 The Grid widget 3-2
Grid documentation 3-2
You must load the various grid*.fsl files 3-3

4 Runtime Generator
4.1 Introduction 4-1

Suitable applications 4-1
Licensing 4-2
Installation 4-2
Using the runtime generator 4-3

4.1.1 The Runtime Generator 4-3
4.1.2 Standalone applications 4-3
4.1.3 The Runtime System 4-4

c - 2 ALLEGRO CL for Windows: Professional Supplement

4.1.4 Making a standalone application 4-4
4.1.5 Lunar Lander example 4-4

Other examples 4-5
4.2 Making an application 4-6

4.2.1 Making your program standalone 4-6
Conditionalizing for the runtime generator 4-7
Loading modules that are needed 4-8
The entry point to your application 4-9
Creating a program item 4-11

4.2.2 Objects always removed 4-12
A note on the unavailability of eval 4-13

4.2.3 Controlling the Runtime Generator 4-13
More on :package-directives 4-15

4.2.4 Recommended Development Path 4-16
4.2.5 Using the Create Standalone Form dialog 4-18
4.2.6 Example of creating your own application 4-18

Step 1: 4-19
Step 2: 4-20
Step 3: 4-20
Step 4: 4-20
Step 5: 4-20
Step 6: 4-21

4.3 Common Lisp Object System 4-21
CLOS Restrictions 4-21

4.4 Troubleshooting 4-23
4.4.1 General Problems 4-23
4.4.2 Specific Problems 4-25

Index

ALLEGRO CL for Windows: Professional Supplement 1 - 1

Introduction

Chapter 1 Introduction to the
Professional
version

The Professional version of Allegro CL 3.0 for Windows is designed for people interested
in serious software development and in delivering applications to others. While the Profes-
sional version includes additional functionality (compared to the Standard version), the
most important addition is the Runtime Generator, which allows you to produce standalone
applications, and a license to distribute those application free of charge.

This document briefly describes the additional functionality and services provided with
the Professional version. The longest chapter is chapter 4, which describes the Runtime
Generator. The chapters in this manual are:

1. Introduction to the Professional version. The chapter you are now reading.

2. Support and source code. All Professional customers are entitled to
customer support as detailed in this chapter. They can also obtain sources for
certain parts of Allegro CL for WIndows, as detailed in this chapter.

3. Sockets and the Grid widget. The Professional version contains code for
interprocess communication (via sockets). It also contains code for the Grid
widget. Both are described in this chapter.

4. Runtime Generator. The Runtime Generator allows you to create standalone
applications (based on your Lisp programs) which you can distribute royalty
free. All aspects are described in this chapter.

There is an index at the end of the manual.

1 - 2 ALLEGRO CL for Windows: Professional Supplement

Standard version customers can purchased the various additions available in the Profes-
sional version individually. This document may be sent to Standard version customers who
have purchased one or more additions. Those customers should note that this manual
describes all possible add-ons even though they may have only purchased some of them.

ALLEGRO CL for Windows: Professional Supplement 2 - 1

S
upport and
S

ources

Chapter 2 Support and
source code

2.1 Support

All Professional version customers are entitled to product support from Franz Inc. (for a
period of time specified in the license agreement -- check with your sales representative for
information on the time limits and renewal options of product support).

In this section, we provide some details of support and make some suggestions on how
you can help Franz Inc. in supporting you.

Send in the Source Code and Support addendum
You will find a document entitledSOURCE CODE AND SUPPORT ADDENDUM TO
FRANZ INC. ALLEGRO CL 3.0 FOR WINDOWS PROFESSIONAL SOFTWARE
LICENSE AGREEMENT included with the distribution. You must fill out, sign, and return
this document in order to be eligible for support.

Contacting by telephone or FAX
When you have a problem, you can call for telephone support (+ 510-548-3600) during reg-
ular business hours (8:00 AM to 5:00 PM United States Pacific time -- 8 or 9 hours west of
Greenwich Mean Time depending on the time of year -- every working day -- Monday
through Friday except holidays). Please note that you may have to hold or leave a number
where you can be called back if support personnel are otherwise engaged.

Or you can send a FAX anytime (+ 510-548-8253). The information in a FAX should
be the same as sent by e-mail, which we describe below.

2 - 2 ALLEGRO CL for Windows: Professional Supplement

Best way to contact: e-mail to pc-support@franz.com
The most efficient and most effective way to obtain customer support for Allegro CL for
WIndows is to send electronic mail. This method is preferred for the following reasons:

• Mail (like faxes) can be sent anytime of the day or night.

• A response can be sent at anytime as well.

• All customer support electronic mail is seen by all development personnel at
Franz Inc. This means that the expert who will deal with the problem (who may
be different from the telephone support person) will see the message at once.

• Your words and your description of the problem are seen by the expert who
handles the problem. (That person is often different from the telephone support
person.)

• Examples and code samples will be machine readable (a big advantage over
faxes). Note that it is virtually impossible to transcribe code samples over the
telephone.

The email address for Allegro CL 3.0 for Windows support ispc-support@franz.com.
Use this address forany question, comment, or request for technical information. (Requests
for sales and product information are best sent toinfo@franz.com.)

A pcspr #
When you send in a question, bug report, or problem description, it will be assigned a pcspr
number (pcspr stands for PC Software Problem Report). The entire record of communica-
tion on the issue will be stored and can be referenced with the pcspr #. Please be sure to
include that number in the subject line of any e-mail and in the body of any other message.
Support personnel will then know what you are referring to and will be able to look at the
record to see what has already happened on the issue.

But please do not bring up new questions, bugs, or problems referencing an existing
pcspr #. Instead, send a message without a pcspr reference. It is best if each pcspr deals with
one issue (or a few related issues).

ALLEGRO CL for Windows: Professional Supplement 2 - 3

S
upport and
S

ources

How to report a bug or problem
Before reporting a bug, please study the documentation to be sure that what you experi-
enced is indeed a bug. If the documentation is not clear, this is a bug in the documentation:
Allegro CL may not have done what you expected, but it may have done what it was sup-
posed to do.

A report that such and such happened is generally of limited value in determining the
cause of a problem. It is very important for us to know what happened before the error
occurred: what you typed in, what Allegro CL printed out. A verbatim log, may be needed.
If you are able to localize the bug and reliably duplicate it with a minimal amount of code,
it will greatly expedite repairs.

 It is much easier to find a bug that is generated when a single isolated function is applied
than a bug that is generated somewhere when an enormous application is loaded. Although
we are intimately familiar with Allegro CL, you are familiar with your application and the
context in which the bug was observed. Context is also important in determining whether
the bug is really in Allegro CL or in something that it depends on, such as the operating
system.

To this end, we request that your reports to us of bugs or of suspected bugs include the
following information. If any of the information is missing, it is likely to delay or compli-
cate our response.

• Lisp implementation details. Tell us the version of Allegro CL for Windows
that you are using, including at least the release number and date of release
(printed in the banner when Allegro CL comes up), and the operating system and
its release number (Windows 95, NT, 3.1 or Windows for Workgroups). The
make and manufacturer of your PC is sometimes helpful, as is information on
non-standard features which you have added, if any. We also need to know what
patches are loaded (the value ofacl:*patches*) and what modules are
loaded (the value of*modules*). The contents of theallegro.ini file are often
helpful. That file is located in the directory where Allegro CL was installed.

• Information about you. Tell us who you are, where you are and how you can be
reached (an electronic mail address if you have one, a postal address, and your
telephone number), your Allegro CL serial number (displayed by choosing
About Allegro CL from the Help menu, also on the CD jewel box).

• A description of the bug. Describe clearly and concisely the behavior that you
observe and what you expected, if it is different.

2 - 4 ALLEGRO CL for Windows: Professional Supplement

• Exhibits. Provide us with thesmallest, self-containedLisp source fragment that
will duplicate the problem, and a log (e.g. produced withdribble) of a
complete session with Allegro CL that illustrates the bug.

A convenient way of generating at least part of a bug report is to use thedribble func-
tion mentioned above. Typing

(dribble filename)

causes implementation and version information to be written to the file specified byfile-
name, and then records the Lisp session in the same file. Typing

(dribble)

will close the file after the bug has been exhibited.dribble is defined in the Online Man-
ual. The following dialogue provides a rudimentary template for the kernel of a bug report.

> (dribble "bug.dribble")

> (pprint acl:*patches*) ;; what patches are loaded

> (pprint *modules*) ;; what modules are loaded

> ;; Now duplicate your bug . . .

> (dribble)

Send the resulting file, along with the additional material asked for above and we will
investigate the report and inform you of its resolution in a timely manner.

We will meet you more than halfway to get your project moving again when a bug stalls
you. We only ask that you take a few steps in our direction.

ALLEGRO CL for Windows: Professional Supplement 2 - 5

S
upport and
S

ources

2.2 Source code

Professional version customer are entitled to the sources for certain parts of the Allegro CL
for Windows system. These sources are not included with the distribution because they are
separately licensed. When you have sent in the license addendum described just below, the
relevant sources will be sent on a diskette.

Send in the Source Code and Support addendum
You will find a document entitledSOURCE CODE AND SUPPORT ADDENDUM TO
FRANZ INC. ALLEGRO CL 3.0 FOR WINDOWS PROFESSIONAL SOFTWARE
LICENSE AGREEMENT included with the distribution. You must fill out, sign, and return
this document in order to be eligible for the source code, which will be sent to you on a
diskette after the addendum has been received by Franz Inc.

What sources are distributed
Sources for the following are sent upon receipt of the license addendum:

• Common Graphics

• The Interface Builder

• The Text Editor

• The Grapher

• The MCI interface

• The Grid Control Widget

Installation instructions will be sent with the source code diskette telling you how to
integrate the sources with the Find Definition facilities of the Text Editor.

Do not load the source files
The sources are for facilities either already present in Allegro CL 3.0 for Windows, or avail-
able as a loadable module. (The Grid Control Widget is a loadable module.) You are
strongly discouraged from loading these sources into the Lisp system, whether modified or
not functionality (unless instructed to do so by Franz Inc.) Modifying these features may
break things in ways that you do not expect, and (because our version will be different from
yours), we will have difficulty provided customer support to deal with problems that arise.

2 - 6 ALLEGRO CL for Windows: Professional Supplement

[This page intentionally left blank.]

ALLEGRO CL for Windows: Professional Supplement 3 - 1

S
ockets and

G
rid w

idget

Chapter 3 Sockets and Grid
Widget

3.1 Socket interface

The Professional version of Allegro CL 3.0 for Windows includes a socket interface for
facilitating interprocess communication. It is described online (in the Online Manual, under
the headingSockets) and inex\socket\socket.txt.

You must load socket.fsl
The socket interface code is not included by default in the Lisp image. In order to have the
functionality available, evaluate the following form:

(require :socket "fsl\\socket.fsl")

You may wish to put this form in yourstartup.lsp file so it will be loaded automatically
when Lisp starts up.

Files in the distribution
• fsl\socket.fsl -- the fsl file containing the facility

• ex\socket\socket.txt -- an online description of the interface

• ex\socket\apserver.lsp -- an examples file

• sockaux.dll -- (in the Allegro CL distribution directory) a DLL loaded into Lisp
when needed.

3 - 2 ALLEGRO CL for Windows: Professional Supplement

winsock.dll is needed
If you are running Windows 95 or Windows NT, you should already have awinsock.dll pro-
vided by MicroSoft. It will be loaded automatically when it is needed.

If you are running Windows 3.1, there is nowinsock.dll file provided by default be
MicroSoft, so you will need to obtain one, usually from a third party. One such is Trumpet
Winsock (v1.0 at the time of printing). This is shareware available (again, when this manual
was printed) from

inorganic5.chem.ufl.edu:/gopher/pub/winsock/

If you are running Windows for Workgroups, again there is nowinsock.dll provided by
default but MicroSoft provides a TCP/IP stack which includes awinsock.dll file. At the
time of printing, information on this file (and others) could be obtained from:

ftp://ftp.microsoft/com/Softlib/index.txt

sockaux.dll must be distributed with applications
If you have the Runtime Generator and are thus licensed to distribute applications gener-
ated by that product (see chapter 4 of this document), you may use socket communication
in your application. If you do so, be sure to distributesockaux.dll along with the other files
you distribute with your application.

3.2 The Grid widget

The Grid is a rather complex widget that displays as a rectangular array of cells, and can be
used to implement applications such as spreadsheets. A grid can have multiple sections of
rows and columns, where each section may be independently scrolled.

Grid documentation
The Grid widget is documented in the Online Manual under the headingGrid-widget .

ALLEGRO CL for Windows: Professional Supplement 3 - 3

S
ockets and

G
rid w

idget

You must load the various grid*.fsl files
The Grid widget code is not included by default in the Lisp image. There are three files that
you can load:fsl\grid.fsl (which has the basic functionality);fsl\griddev.fsl, puts the Grid
widget in the Interface Builder; andfsl\gridtest.fsl, which is a Grid example.

In order to have the functionality available, evaluate the following forms:

(require :grid "fsl\\grid.fsl")

(require :griddev "fsl\\griddev.fsl")

(require :gridtest "fsl\\gridtest.fsl")

You may wish to put these forms in yourstartup.lsp file so it will be loaded automati-
cally when Lisp starts up.

The gridtest example is initiated with the form(grid-example) after loading
grid.fsl andgridtest.fsl.

Note that the Interface Builder only knows about the grid widget aftergrid.fsl andgrid-
dev.fsl are loaded.

3 - 4 ALLEGRO CL for Windows: Professional Supplement

[This page intentionally left blank.]

ALLEGRO CL for Windows: Professional supplement 4 - 1

R
untim

e
G

enerator

Chapter 4 Runtime Generator

4.1 Introduction

The Runtime Generator is used to convert programs requiring the support of the Allegro
CL for Windows standard system into programs that can be executed independently. Such
programs are calledstandalone applications and they rely upon the support of the Allegro
CL for Windows runtime system to execute.

The conversion process analyzes which parts of the full Lisp system are required to sup-
port the application and removes unused parts. This makes the resulting application smaller
and therefore less demanding on memory and disk space. Against this, it requires that your
code be entirely self-supporting since inadvertent references to absent objects are almost
certain to cause your program to fail.

Although the procedure for creating a standalone application is largely automatic, it can
be quite lengthy. In practice, it is not worth generating the application until you are satisfied
that the code has been thoroughly tested and debugged while running in the full Allegro CL
programming environment:Producing a standalone application should be the very last
step of program development.

Suitable applications
The Runtime Generator is specially intended for applications that do not use parts of the
standard system such as

• the compiler

• theeval function

• programming tools

4 - 2 ALLEGRO CL for Windows: Professional supplement

This permits a considerable reduction in image size. Some of your programs may make
use of the Allegro CL development environment: the programming tools or Lisp compiler,
for example. Unless you avoid these dependencies, it is only feasible to use such programs
in conjunction with the standard Lisp system.

The eventual space savings depend on how much of the standard Lisp system needs to
be retained in order to support completely your standalone application. For example, if you
do not useformat , the Runtime Generator can be instructed to delete that part of the Lisp
system and the resultant image will be smaller. For optimum savings, you have to assist the
Runtime Generator by providing information on what may be safely deleted, as explained
in section 4.3.

Licensing
Allegro CL for Windows Professional version licensees are granted the right to distribute,
royalty-fee, applications which were generated using the Allegro CL for Windows Runtime
Generator. The filelisp.exe may be distributed royalty-free as well, and the files
aclgut16.dll, aclgut32.dll, and sockaux.dll. (The aclgut*.dll files are for the universal
thunk. Thesockaux.dll file is needed for interprocess communication via sockets. All are
in the distribution directory. They may not be required, but you may want to distribute them
anyway with your application just to be safe.) Franz Inc. needs to be contacted for any other
distribution arrangements.

Installation
All Runtime Generator files are included in the Professional Allegro CL for Windows dis-
tribution. The runtime imageruntime.img is installed as part of the installation process so
just follow the standard installation instructions found in theGetting Started document.
runtime.img has a program item installed along with the normal Allegro CL program item.
It is labeled ‘Allegro CL Runtime’.

ALLEGRO CL for Windows: Professional supplement 4 - 3

R
untim

e
G

enerator

Using the runtime generator
To make fullest use of the facilities and options provided by the Runtime Generator requires
a working knowledge of Lisp and those parts of the language your application uses. Nev-
ertheless, provided you are aware of the basic principles, it is relatively straightforward to
use the Runtime Generator with its default settings. The result may not be the best that can
be achieved, but it is possible to produce a working standalone application, gain experience
of the operation of the system and get some idea of the likely space savings.

The first part of this section recapitulates the purpose, scope and definitions associated
with the Runtime Generator which have already been outlined in the section 4.1. As a dem-
onstration, the last subsection takes you through the production of a simple standalone
application called Lunar Lander working from source code provided in the distribution.
Other examples are also referred to in that section.

4.1.1 The Runtime Generator

The Runtime Generator is used in conjunction with the Allegro CL for Windows system to
create standalone applications which use the smaller Allegro CL runtime system. The Gen-
erator has three components: the runtime-system Lisp application, a Lisp file called
readme.lsp in theex\runtime directory and the runtime-system image that was created dur-
ing the installation procedure.

4.1.2 Standalone applications

A standalone application consists of at least two parts: the runtime-system Lisp application
and a Lisp image made by loading your entire source code into the runtime-system image.

The permanently resident part of the standalone application may be smaller than 200kB.
The only thing the standalone application can do is run your program; it cannot be used as
a general-purpose programming tool and it is impossible to add new functions to it.

4 - 4 ALLEGRO CL for Windows: Professional supplement

4.1.3 The Runtime System

The runtime-system Lisp image (runtime.img) is a cut-down version of the Allegro CL
standard image. It is intended as a stepping stone to a Lisp image incorporating your source
code. As a consequence, its programming environment and development facilities are poor.
Most of the programming tools (including the Debugger) are absent, or present in only a
rudimentary form. The text editor provides only basic operations of a general nature and
most of the menus provided in the standard system are not available. However, it does
include the full compiler (although the compiler is removed as part of the runtime genera-
tion process) and many of the Common Lisp functions and symbols.

4.1.4 Making a standalone application

The process of generating a standalone application is quite straightforward. In outline, you
startup Allegro CL Runtime, load in your Lisp source code, then call a single function to
create the standalone image. Finally, you create a program item for the application.

This function can take a quite complex set of arguments so a template is included in the
ex\runtime\readme.lsp Lisp file supplied as part of the distribution. You can edit a copy of
this code and then load it into the system after your source code to initiate the application
creation. The listing also contains comments to assist you in choosing the arguments appro-
priate for your application. A dialog box for creating a call tocreate-standalone-
application is also provided, as described in section 4.3.5.

In this section, we make a sample application to get the feel of what should happen when
things are going right.

4.1.5 Lunar Lander example

Theex\runtime directory contains a file calledlunaland.lsp. This is a very simple demon-
stration program along the lines of the text-based Moon landing programs popular on tele-
types before the advent of cheap graphics terminals. The game can be run by loading the

ALLEGRO CL for Windows: Professional supplement 4 - 5

R
untim

e
G

enerator

code and then typing(program) . Type in a thrust value between 0 and 30 to reduce your
rate of fall towards the Moon and hit Enter to see how the lander responds. Landing with a
velocity of less than 10 (in unspecified units) is considered a success.

To make a standalone version of Lunar Lander, start Lisp by double-clicking on Allegro
CL Runtime. Then load inex\runtime\lunaland.lsp using theLoad option on the File menu.
Now loadex\runtime\mklunar.lsp and tell Lisp where to save the standalone application.
Wait while Lisp does some internal tidying up and a few garbage collections. It then saves
the application to the place you specified. You can create a program item for Lunar Landing
by following the instructions at the end of section 4.3.1.

To run the Lunar Lander application, double-click on the program item. Lisp starts up
and the Lunar Lander window appears. To quit the application you can close the window,
or play the game and then decline to play another, or interrupt the program using theBreak
key (sometimes calledBreak and Pause).

Other examples
Theex\runtime directory also contains a bouncing smiley-face example (the filessmiley.lsp
and mksmiley.lsp) and a prototype call toallegro::create-standalone-
application with comments and advice (readme.lsp). The smiley-face example is dis-
cussed in section 4.3.6 below.

4 - 6 ALLEGRO CL for Windows: Professional supplement

4.2 Making an application

Once you have developed, tested and debugged your intended application using the Allegro
CL for Windows standard system, you can move on to the production of a standalone ver-
sion. It must be emphasized that it is only worth proceeding when you are sure that your
code is thoroughly debugged; much grief can ensue otherwise!

To make a standalone application, start Allegro CL Runtime (it was installed as part of
the Allegro CL for Windows installation and its program item should be next the Allegro
CL program item).

Once you have started Allegro CL Runtime, there are four steps to producing your
application:

1. Load any needed modules.

2. Add a function to launch your application.

3. Make your code less reliant upon the Allegro CL programming environment.

4. Proceed by steps to remove parts of the runtime system, checking at each
stage that the resultant application executes satisfactorily.

There are plenty of things which can go wrong and it is wise to proceed with caution.
By adopting a methodical approach, it is easier to backtrack in the event of a problem.

Step 4 takes place in two stages. First, parts of the Lisp system are removed automati-
cally. This action is always performed and you cannot override it. Next, additional parts are
optionally removed according to your instructions when you initiate the application cre-
ation. Guidance on precisely what is done and how to proceed is given in this section. We
use the Smiley-Face application mentioned in Section 4.2.5 as an example to illustrate the
creation of an application. Common problems are described in section 4.4.

4.2.1 Making your program standalone

Once you are satisfied that your code works correctly in the Allegro CL standard system,
you can make the changes needed for it to run on its own. This usually involves writing
some additional support code.

ALLEGRO CL for Windows: Professional supplement 4 - 7

R
untim

e
G

enerator

Creating an image requires starting up Allegro CL Runtime and calling the function
allegro::create-standalone-application . The file readme.lsp contains a
template for a call to that function. In this section and section 4.3.2 and 4.3.3, we discuss
what the call will look like, telling you how to modify a copy of the filereadme.lsp so it
contains the correct call. The dialog displayed by choosingCreate Standalone Form from
theImages submenu of the File menu can be used either to create a file containing a call to
allegro::create-standalone-application or makes the call itself. See sec-
tion 4.3.5Using the Create Standalone Form dialog for more information.

Conditionalizing for the runtime generator
At times, you may find that you need to make the behavior of your source code conditional
on whether it is being evaluated (and therefore compiled) under the standard Lisp system
or the runtime system. For example, the runtime version may have to specially build a menu
that would have been automatically present under the standard system. Rather than main-
tain two versions of your code, you can use the conditional read macros#+ and#- to
respectively invoke or disable code specific to runtime-system evaluation.#+ and#- are
followed immediately by a feature name and then a form which is evaluated conditionally
on the presence or absence of this feature on the list held by*features* . (See the
descriptions of#- and#- and of*features* in the Allegro CL Online Documenta-
tion.) The Runtime Generator includes the feature:runtime-system . For example, in
the following code:

(for directory bound *sources-directory* and filename in
'("file1"

#+runtime-system "file2"
#-runtime-system "file3")

do
(load (merge-pathnames filename directory)))

file1 is always loaded,file2 is only loaded when the code is being evaluated in the runt-
ime system, andfile3 is loaded unless the code is being evaluated in the runtime system.

4 - 8 ALLEGRO CL for Windows: Professional supplement

Loading modules that are needed
Developers of standalone applications are pulled in two directions: They want functionality
available in case it is needed and they want the application to be small. Striking a balance
is never easy. Later in this section, we describe how things are thrown out of the image
when a standalone application is created. Some thing, however, are left out of the image at
the beginning and need to be loaded in if they will be needed.

The file readme.txt in the Allegro CL directory (by default,c:\allegro, the directory
where Allegro CL was installed) contains commented-out forms that load particular mod-
ules into a Lisp image (loading is done with the functionrequire). You should copy this
file to alsp file (sayrg-mods.lsp), uncomment the require forms for the features needed in
your application, and load the modifiedrg-mods.lsp into the Runtime image. This will
cause the uncommented modules to be loaded and will make the associated functionality
available.

What follows is a partial list of the modules that are available (look at thereadme.txt file
for the complete list). Note that the ones associated with the Grid widget and the Socket
interface are supplied only with the Professional version of Allegro CL for Windows. (This
document may be provided to Standard version customers who purchased the Runtime
Generator add-on but who may not have purchased the Grid or Socket add-ons. All Profes-
sional version customer have all listed modules.)

Note too the Grid Widget for the Interface Builder cannot be loaded into a Runtime and
so should not be uncommented.

;; REQUIRED BY ALL IN-LISP WIDGETS (OUTLINE, GRID,
;; AND LISP-GROUP-BOX)
; #P"fsl\\lispwij.fsl"
;; THE OUTLINE CONTROL
; #P"fsl\\outline.fsl"
;; THE GRID-WIDGET
; #P"fsl\\grid.fsl"
;; THE GRID WIDGET IN THE INTERFACE BUILDER (CANNOT LOAD
;; INTO ALLEGRO RUNTIME)
; #P"fsl\\griddev.fsl"
;; THE GRID EXAMPLE
; #P"fsl\\gridtest.fsl"
;; A GROUP-BOX WHICH IS 3D EVEN IN WINDOWS 3.1
; #P"fsl\\groupbox.fsl"

ALLEGRO CL for Windows: Professional supplement 4 - 9

R
untim

e
G

enerator

;; REQUIRED BY ALL WINDOWS 95 COMMON CONTROLS
; #P"fsl\\comcon.fsl"
;; HEADER-CONTROL COMMON CONTROL
; #P"fsl\\header.fsl"
;; PROGRESS-INDICATOR COMMON CONTROL
; #p"fsl\\progress.fsl"
;; THE MULTI-SECTION COMMON-STATUS-BAR COMMON CONTROL
; #P"fsl\\statbar.fsl"
;; TAB-CONTROL COMMON CONTROL
; #P"fsl\\tab.fsl"
;; TRACKBAR COMMON CONTROL
; #P"fsl\\trackbar.fsl"
;; UP-DOWN-CONTROL COMMON CONTROL
; #P"fsl\\updown.fsl"
;; DYNAMIC DATA EXCHANGE (DDE)
; #P"fsl\\dde.fsl"
;; [... remainder of excerpts from readme.txt deleted. Look at
;; the readme.txt file for more information and complete list of
;; modules.]

If you try to use functionality that is not loaded, you get the usual undefined function,
unbound variable, etc. errors just as if you tried to use functionality in any unloaded file.
because most of the functionality is in the Lisp image (but not in the Runtime image), you
may want to start by uncommenting everything and then cutting back.

The entry point to your application
When a standalone application is launched, it performs some initialization and then calls a
function whose effect is to run your program. This means your program must be written to
have a single entry point - a Lisp function taking no arguments - which can be called to exe-
cute your program. The Runtime Generator must be informed of the name of this function
when you make the standalone application.

The process of producing a standalone application is initiated by calling
allegro::create-standalone-application in the runtime system. The func-
tion takes an extensive list of arguments and you may find it helpful to edit the template
provided in theex\runtime\readme.lsp file supplied in the distribution (edit a copy of the
file). The edited template can then be loaded into the runtime system directly after loading
your application source code.

4 - 10 ALLEGRO CL for Windows: Professional supplement

To illustrate, suppose you have loaded your source code into the runtime system which
has defined your startup function asmy-program in thecommon-lisp-user package.
(In other words, if you wanted to, evaluating(my-program) would launch your pro-
gram.) The first executable form in a copy of the fileex\runtime\readme.lsp should be
changed to specify this:

(allegro::create-standalone-application
'common-lisp-user::my-program
...)

Loading the modified form will commence production of the standalone application,
usingmy-program as the entry point.

allegro::create-standalone-application takes one compulsory argu-
ment, the name of your program's entry point, and several keyword arguments which spec-
ify which parts of the system may be removed and control aspects of the resulting
standalone application. These all default to the most conservative value, so initially you can
omit them all. This will result in a fairly large application containing everything that it is
possible to retain.

Once your code works in this environment you can change some of the arguments to
remove parts of the system that you know you do not actually need but that Lisp would hold
on to by default just in case. For example, it is frequently possible to delete some of the
packages, but Lisp must keep them by default in case you try to access or intern symbols
in them.

Having successfully defined your single entry point, you may need to go on and make
additional changes to take over operations formerly performed by parts of the system which
are always removed, itemized in the next section.

Note: allegro::create-standalone-application takes a while to
execute. As part of this execution, it clears the screen. (On Windows 3.1, only the
frames of various windows are visible.) Do not fear! Once the standalone applica-
tion has been created, the Runtime Generator itself exits (and, under Windows 3.1
control will be returned to Windows). Note too that creation of the standalone
application is memory-dependent, and takes longer on machines with less memory.
We do not recommend creating a standalone application on a machine with only 4
Megabytes of memory since the process can over an hour.

ALLEGRO CL for Windows: Professional supplement 4 - 11

R
untim

e
G

enerator

Creating a program item
allegro::create-standalone-application creates an image file (for exam-
ple c:\myapp\foo.img). Now you may want to create a shortcut for the application (under
Windows 95) or a program item for the application in the Program Manager (under the old
Windows shell).

To create a shortcut under Windows 95, assuming your Allegro CL for Windows kernel
is in c:\allegro\lisp.exe, do the following:

1. Right-click in desktop and selectNew and thenShortcut.

2. For command, type

c:\allegro\lisp.exe c:\myapp\foo.img

3. For name, choose a name and enter it.

Under Windows 3.1 or using the old Windows shell, do the following, again assuming
your Allegro CL for Windows kernel is inc:\allegro\lisp.exe:

1. In the Windows Program Manager, click on the File menu and selectNew.

2. In the New Program Object dialog box, selectProgram Item.

3. In the Program Item Properties dialog box, type:

c:\allegro\lisp.exe c:\myapp\foo.img

into the Command Line space.

The item will be displayed with the Allegro CL for Windows icon unless the
Program Item icon is changed by selectingChange Icon from the Program
Item Properties dialog box. Change the icon if you desire.

This will create the Program Item and completes creation of your standalone applica-
tion. The application can now be copied and distributed (with the Allegro CL for Windows
kernel filelisp.exe).

4 - 12 ALLEGRO CL for Windows: Professional supplement

4.2.2 Objects always removed

While creating a standalone application, some actions are carried out automatically by the
Runtime Generator. They are listed below along with comments about the implications and
what to do in case of difficulty. The information given here is necessarily of a technical
nature.

• The compiler is removed. This is a fundamental limitation on the kind of
program that can be made into a standalone application. It also destroyseval
and prevents the#. and#, read macros from working.

• All macros are removed. You do not need them without the compiler.

• The proclaim function is disabled. It is only useful at compile time and the
compiler is not present. Removing it saves some space.

• The About Application" dialog box is redefined. This is the dialog box you
normally see when you select the last item of the Help menu of an application,
e.g., with the standard Allegro CL for Windows image, the box is entitled "About
Allegro CL for Windows". If you define a functioncommon-lisp-
user::about-application in your code then it will be called with no
arguments when the box is selected in the standalone application. Otherwise
selecting theAbout Application box will do nothing.

• Definition and documentation information is removed. Most of such
information present in the Allegro CL for Windows standard system is already
absent from the runtime system. Documentation strings and lambda-list
information is also removed from the user's code; it is unnecessary in an
executing standalone application.

• Some session-init-functions are removed. Those initially present in the
runtime system are removed. Any added later are retained in the correct order,
so that the first one added by your code (at loadtime or runtime) will be the first
in the list. This is unlikely to affect you unless your running program uses the
list. The session-exit-functions and session-variables lists are similarly modified.

• Some comtabs are modified. All menu commands and command names are
removed from the comtabs*default-comtab* , *raw-text-edit-
comtab* and *text-edit-comtab* . If you want menu commands or
command names in those comtabs, you must add them yourself at runtime.

ALLEGRO CL for Windows: Professional supplement 4 - 13

R
untim

e
G

enerator

• The toploop package is destroyed. Type information, structures, function
definitions, property lists and values of symbols in thetoploop package are
removed. The package is then deleted. Therefore you should avoid putting your
own symbols into thetoploop package. At runtime the Toploop window is not
opened and*terminal-io* is not bound to an open stream. Unless you take
steps to the contrary, any output to*terminal-io* will cause an
unrecoverable error. Since warnings, printed error messages and the like are sent
to this stream, you may want to open it explicitly yourself. If you want to see
printed messages and so on, bind it to an open window. If you want all text sent
to it to just disappear, bind it to a null stream, as created by(make-
broadcast-stream) . You may also need to set up*error-output* as
a synonym stream of*terminal-io* to handle error messages.

• Some variables are re-initialized. *print-case* and*read-case* are
set to:upcase .

• The Online Manual is removed. The Allegro CL Online Manual describes
Common Lisp.

A note on the unavailability of eval
Becauseeval is not available in a Runtime image, you cannot construct a form and eval-
uate it. However, you can usefuncall orapply to achieve the same result. Suppose you
want to construct and evaluate the form

(foo arg1 arg2)

Either of the following two forms, both of which will work in a Runtime image (assum-
ing thatfoo is defined as a function, of course), are equivalent:

(apply #’foo (list arg1 arg2))

(funcall #’foo arg1 arg2)

4.2.3 Controlling the Runtime Generator

You can obtain further savings in the size of standalone applications by making use of the
keyword arguments passed toallegro::create-standalone-application . If
they are not required, removal of the error handlers,format , the printer and the reader
produces a significant reduction in size.

4 - 14 ALLEGRO CL for Windows: Professional supplement

It is necessary to leave the extent of removal to the programmer's discretion since many
system functions check their arguments and call an error handler if they detect a problem.
Note however that the standard error handlers useformat , andformat uses the printer.
If you remove the error handlers you may need to addtrap-exits anderrorset
forms to allow your program to die gracefully in the event of an error. Otherwise an error
being raised will result in a call tounwind-stack and an untimely exit from your appli-
cation.

The keywords ofallegro::create-standalone-application are listed in
the table below along with a description of their effect:

Table 1: Keyword arguments to create-standalone-application

Keyword Argument Description

:classes-to-remove Specifies which CLOS classes to remove. The classes
are provided as a list. The default isnil .

:image Specifies the pathname for the resulting standalone
application. Ifnil (the default) Lisp prompts with a
file dialog; clicking Cancel in the dialog aborts appli-
cation creation.

:image-part-size A numeric value that specifies the maximum size of
the image file in bytes. If the size of the image exceeds
the specified size, the image is split into parts to con-
form to the specification. Ifnil (the default), no max-
imum size is specified and the image is not split.

:interruptible nil if Break key break handling is to be disabled
within the standalone application. The default ist , i.e.
interrupts enabled. Note that an interrupt (under certain
conditions) may cause your program to crash.

ALLEGRO CL for Windows: Professional supplement 4 - 15

R
untim

e
G

enerator

More on :package-directives
As said in the last table entry above, the value of the:package-directives argument
must be an association list whose elements are dotted pairs of the form(item .
directive) . item must identify a package. The list of possibledirective s and their

:no-dialog-on-errors If non-nil the error handlerserror , sys-error
andbreak are redefined to callunwind-stack
with argumentsnil , error , nil . warn will do the
same if*break-on-warnings* is non-nil .
Unless you take preventative measures, any errors will
cause the application to exit.

:remove-clos-lambda-
lists

Specifies whether CLOS lambda lists are to be deleted.
If nil (the default), the lambda lists are not removed.

:remove-format If non-nil , format is removed. Trying to call
format will cause an error. The default isnil .

:remove-printer If non-nil , the printer is removed. Trying to call the
printer will cause an error. The default isnil .

:remove-reader If non-nil , the reader is removed. Trying to call the
reader will cause an error. The default isnil .

:package-directives An association list controlling the processing of pack-
ages. Each element of the list should be a dotted pair of
the form(item . directive) . item is coerced
to a package and must therefore be an actual package
or something acceptable tofind-package . See just
below for more information.

Table 1: Keyword arguments to create-standalone-application

Keyword Argument Description

4 - 16 ALLEGRO CL for Windows: Professional supplement

effects is given in the table below.

Deleting a package does not delete its symbols, but makes them uninterned. If you need
to keep uninterned symbols, e.g. because you have attached properties to them or given
them values, you must either reference them from your code (or know that they are refer-
enced from system code which is referenced from your code) or use one of the directives
above. However, if you useread or intern and want them to find symbols correctly, you
must arrange to keep the appropriate packages.

• If the value of :package-directives is notnil and a package does not
appear in any package directive it is explicitly deleted. Thetoploop
package is always subject to an explicitdelete-package .

• By default, the value of the:package-directives keyword argument is
nil meaning all packages except thetoploop package are processed as
though they had directive:keep .

4.2.4 Recommended Development Path

Once you have reached the point where your standalone application executes correctly
using the default keyword arguments ofallegro::create-standalone-
application , you may wish to consider making further savings. We suggest you add
keyword arguments in the following order. After each step you should check that the stan-
dalone application still works. If it does not, refer to section 4.4 for guidance on corrective
action. If size is an important consideration, you may find it worthwhile rewriting your
application to avoid using one or more offormat , the printer and reader, which can then
be removed by the use of keywords.

Directive Effect

:keep leave the package alone

:internal delete unreferenced internal sym-
bols

:external delete unreferenced internal and
external symbols

ALLEGRO CL for Windows: Professional supplement 4 - 17

R
untim

e
G

enerator

1. Add :image and :interruptible keywords. These are unlikely to
cause problems.

2. Eliminate the reader if you do not need it. This should not cause problems but
be aware that the reader is required by some dialog box items e.g. those with
the widgetlisp-text .

3. Eliminate the error handlers,format , and the printer if you do not need
them. This should not cause additional problems but any runtime errors will
not be reported in dialog boxes; instead your program will abort. If you leave
the standard error handlers but removeformat or the printer, an error causes
stack overflow due to a sequence of "Undefined Function" errors while trying
to report the original error.

4. Delete some packages and remove symbols from others using the
:package-directives argument. There is a form in the Runtime
Generator filereadme.lsp which computes the packages defined by you or
used by one of your packages: you may find this useful. Unless you
specifically need to read or intern a symbol from a package other than one of
those, you will probably find that specifying a:external directive to all
the packages computed by the form results in a working standalone
application. You must always keep thesystem anduser packages but a
directive of:external for these packages will normally be acceptable.

4 - 18 ALLEGRO CL for Windows: Professional supplement

4.2.5 Using the Create Standalone Form dialog

ChoosingCreate Standalone Form from theImages submenu of the File menu displays
the following dialog.

Each argument toallegro::create-standalone-application has an
associated widget allowing you to specify it in the dialog. After you have made your selec-
tions, click onCreate Image to create an image file (you must be running Allegro CL Runt-
ime for this to work). Click onSave File to save the call tocreate-standalone-
application in a file.Load File will load a file with such a call, allowing you to modify
the arguments beforecreate-standalone-application is actually called. You
need not be running Allegro CL Runtime forSave File andLoad File to work.

4.2.6 Example of creating your own application

This section provides a step-by-step description of the creating of the Smiley-Face standa-
lone application, once the application code itself had been written and debugged com-
pletely. This is done to illustrate the process described in the preceding sections.

ALLEGRO CL for Windows: Professional supplement 4 - 19

R
untim

e
G

enerator

The code for the Smiley-Face application is found in the fileex\runtime\smiley.lsp. We
will illustrate in this section how the associated application-generation file,mksmiley.lsp,
was created. Each step of the process described below includes the following seven sub-
steps:

(a) Start the Runtime Image of Allegro CL for Windows. You will normally load
modules specified inreadme.txt at this point, but no modules are required for the
Smiley Face application. See the information under the headingLoad modules
that are needed in section 4.3.1 above for more information.

(b) Edit a file to create the application (mksmiley.step# -- i.e. mksmiley.1,
mksmiley.2 etc.)

(c) Load in the application code,smiley.lsp

(d) Load in the creation code,mksmiley.step#(i.e. mksmiley.1, mksmiley.2 etc.)

(e) After the application has been built, create the Program Item

(f) Ensure that the application works correctly

(g) Check the size of the resulting image (You can view the resulting image size by
using the File Manager -- click on theView option and selectPartial Details. In
the dialog box forPartial Details, select theSize option.)

For brevity in the description below, we will not explicitly repeatedly mention sub-steps
(a), (c), (d), (e) and (f), as the operations involved are repetitive and identical with each iter-
ation through this loop. We discuss only sub-steps (b) and (g), i.e., the editing of the cre-
ation file, mksmiley.*, and the size of the resulting image. (For details about creating a
Program Item for the standalone application, refer to section 4.3.1.)

Step 1:
(b) Create a file,mksmiley.1, specifying the entry point for the standalone applica-
tion, with the form:

(allegro::create-standalone-application 'user::smile)

When prompted for a name for the resulting image, type "smiley.1".

(g) The resulting size will be only marginally smaller than the Runtime Image
itself.

4 - 20 ALLEGRO CL for Windows: Professional supplement

Step 2:
(b) Copymksmiley.1 to mksmiley.2. In mksmiley.2, add the keywords for:image
and :interruptible , using (changeallegro\ appropriately if you loaded the
distribution into another directory):

:image "c:\allegro\ex\runtime\smiley.2" :interruptible t

(g) The resulting size will be virtually unchanged from Step 1.

Step 3:
(b) Copy mksmiley.2 to mksmiley.3. In mksmiley.3, add the keyword for
:remove-reader , i.e., specify:

:remove-reader t

(g) Again, the resulting size will be virtually unchanged from Step 1.

Step 4:
(b) Copymksmiley.3 tomksmiley.4. In mksmiley.4, add the keywords for errors and
printing, i.e.,:

:no-dialog-on-errors t :remove-format t :remove-printer t

(g) Again, the resulting size will be virtually unchanged from Step 1.

Step 5:
(b) Copymksmiley.4 to mksmiley.5. In mksmiley.5, add the keyword for package-
directives, i.e.,:

:package-directives '((:common-lisp-user . :external)

 (:system . :external)

 (:printer . :external)

(:common-graphics . :external))

Note that we do not include theallegro package because the symbol for
create-standalone-application is internal to this package (if
allegro was added to the list above, an error would result during application cre-
ation). Note also that specifying the printer package actually increases the size of

ALLEGRO CL for Windows: Professional supplement 4 - 21

R
untim

e
G

enerator

the image slightly, because all of the printer package had earlier been removed
(using the:remove-printer keyword).

The (let (old-package-list ...)) form in readme.lsp can be used at
this point to determine which packages are used by the application. In the case of
this application, no additional information was made available by evaluating this
form.

(g) The resulting size should be significantly smaller than the previous sizes.

Step 6:
(b) Copymksmiley.5 to mksmiley.6. In mksmiley.6, add the keywords for CLOS,
i.e.:

:remove-clos-lambda-lists t :classes-to-remove ’()

(g) The resulting size of the image should be smaller than the image in step 5.

Using the steps above, the image size is typically reduced to about 40% of its original
size. While other applications may not be reduced as much the example does illustrate the
savings available through relatively mechanical operations. Further savings can be
achieved through a better understanding of the application and the underlying system, but
they will require more time than the steps above.

4.3 Common Lisp Object System

CLOS Restrictions
As explained in Section 4.1, standalone applications cannot use the Lisp compiler. This
means that the CLOS functionsadd-method , remove-method , ensure-
generic-function . which recompile the generic function, cannot be used.

Some types of method combination callcompute-effective-method which in
turn calls the compiler. They are:

• generic functions with optimizations off (e.g. speed level 0 or 1);

• user-defined long-form method combination;

• user-defined short-form method combination where the operator is a special
form or macro.

4 - 22 ALLEGRO CL for Windows: Professional supplement

Note: Actually, a code template scheme is used to avoid compiling every time. In
cases where the effective method code isequal to a previously called effective
method (treating all calls tocall-method as equal), the compiler is not
invoked. Thus, to use the above method combination types in a runtime application
it is necessary first to fill the cache by calling generic functions with these method
combinations with all of the patterns of arguments with which they will later be
called.

Local generic functions created bygeneric-flet , generic-function ,
generic-labels andwith-added-methods are created in a different way without
calling the compiler. However, they will callcompute-effective-method (see
above).

ALLEGRO CL for Windows: Professional supplement 4 - 23

R
untim

e
G

enerator

4.4 Troubleshooting

Section 4.3 covered some of the problems you might encounter while trying to create a
standalone application. This section deals with difficulties that may be encountered whilst
trying to run the application. Only the more common problems are described, though this
should be sufficient to indicate where the trouble lies.

In general, runtime errors are more tricky to track down as some detective work is
involved. As the programmer, you are at a disadvantage since you can no longer call upon
such facilities as the Allegro CL Debugger. You may also have directed the Runtime Gen-
erator to removeformat and the Lisp printer, so unanticipated Lisp errors cannot be
reported without causing more errors and the system quickly ties itself into a knot. In many
cases, you cannot recover from the error and you will be forced to exit from the standalone
application giving you no opportunity to investigate further.

Most solutions are based on the strategy of going back a step or two in the development
process until you produce a version of your intended standalone application that works.
You should also double-check that your code functions correctly in the Allegro CL for Win-
dows standard system and that your application is tailored for turning into a standalone
application.

The remainder of this section is divided into two subsections suggesting causes of spe-
cific errors and more general problems that arise.

4.4.1 General Problems

➨ Too many garbage collections occur
Fault:

• There is very little free memory when Lisp is running.

• The program is generating lots of garbage.

Fixes
• Try to remove more from the standalone application.

• Increase theHeapsize variable in theallegro.ini file.

• Install additional RAM (available from your hardware supplier).

4 - 24 ALLEGRO CL for Windows: Professional supplement

➨ Symbols not being looked up correctly
Fault:

• Symbol shadowing problem in the source code.

• The original symbol was destroyed because it was not referenced by code in the
standalone application and a new symbol was created byread or intern .

Fixes
• Correct the source code.

• Check that the home package of the symbol is not thetoploop package. This
package is always deleted and its symbols have their values, function definitions
and property lists removed.

• Preserve the package of the troublesome symbol and keep its internal or external
symbols as appropriate using the:package-directives argument to
create-standalone-application .

• One way to reference the troublesome symbol from your code is by putting it on
the property list of the symbol naming your program entry point.

➨ Symbol unexpectedly not bound/fbound
This problem has the same possible causes and the same suggested fixes asSymbols not
being looked up correctly above.

➨ get unexpectedly failing
This problem has the same possible causes and the same suggested fixes asSymbols not
being looked up correctly above.

ALLEGRO CL for Windows: Professional supplement 4 - 25

R
untim

e
G

enerator

➨ Unexpected exit from the application
Fault:

• This problem usually occurs when the Lisp error handlers are removed and an
error occurs, causingunwind-stack to unwind all the way out of the
application.

Fixes
• Determine the cause of the error by keeping the error handlers,format and the

printer. Correct the error or trap it and handle it yourself usingtrap-exits ,
errorset or *error-hook* .

• If the application will not run at all, remove fewer parts of the runtime system
and try again.

➨ Apparent failure to run at all
The causes and suggested fixes are the same asUnexpected exit from the application
above.

4.4.2 Specific Problems

➨ Image too large to load
A dialog box reportingImage too large to loadappears.

Fault
• Insufficient memory available to read in the standalone application

Fixes
• Try to remove more from the standalone application.

• Install additional RAM (available from your hardware supplier).

➨ Stack overflow 1
A dialog box reporting the errorHARD ERROR: stack overflow appears.

Fault
• Source code error (so it also happens if the code is loaded and executed in the

full runtime system image).

4 - 26 ALLEGRO CL for Windows: Professional supplement

• Lisp attempting to raise an error but the printer and/orformat have been
removed or the error handlers have been incorrectly redefined leading to more
errors which cannot be handled.

Fixes
• Check for a source code error by loading the code into the full runtime system

image and running it.

• Leave the printer,format and the error handlers intact and repeat the actions
which led to the stack overflow. This may cause an error message to appear. Fix
the cause of the error.

• Remove less of the system until the problem goes away. Thereafter, do not
remove the parts of the system which prevent the problem recurring.

➨ Stack overflow 2
A dialog box reporting the errorError: Stack overflow. You may be recursing infinitely.
appears. This problem has the same possible causes and the same suggested fixes asStack
overflow 1above.

➨ Trying to write to a closed stream
A dialog box reporting the errorError: Argument #<CLOSED-STREAM ...> to i/o
function must be to an open stream appears.

Fault
• Trying to read/write to a stream which has been closed or to an object which is

not a stream at all (a source code error).

• Lisp trying to write to*terminal-io* , *error-output* or another
system stream. For instance, it may be attempting to print the text of an error
message or warning.*terminal-io* corresponds to the Toploop window in
a normal image and is not opened automatically in a standalone application.

Fixes
• Correct the source code error.

• Either open*terminal-io* and*error-output* as windows or sink all
output sent to them by binding them to the result of(make-broadcast-
stream) . See the entry on*terminal-io* in the Online Manual for more
information.

ALLEGRO CL for Windows: Professional supplement 4 - 27

R
untim

e
G

enerator

➨ System error
An dialog sayingSorry, a system error occurred appears.

Fault
• The machine has got into an abnormal state through earlier errors.

• The user program has performed an illegal operation with Lisp's error checking
turned off.

• The user program has performed an ill-conditioned operation using the Foreign
Function Interface.

• The user program tried to perform an operation on an object of the wrong type
(for example, taking thecar or cdr of something mistakenly declared as a
cons) while the safety level of the compiler was set inappropriately. (For
information on controlling the compiler's safety level, read the file Controlling
the Compiler in the folder Programming Examples supplied with the Allegro CL
for Windows standard system.)

Fixes
• Reboot the machine and try again.

• Switch on the maximum compiler safety level. Check and correct the source
code.

➨ System low-level debugger entered
The possible causes and suggested fixes are the same as forSystem errorabove.

4 - 28 ALLEGRO CL for Windows: Professional supplement

[This page intentionally left blank.]

ALLEGRO CL for Windows: Professional Supplement I - 1

Index

Index

Symbols
#- 4-7
#+ 4-7
#, 4-12
#. 4-12

A
About Application 4-12
add-method 4-21

B
break 4-15
break-on-warnings 4-15
bug

how to report 2-3
bug report

by e-mail (to pc-support@franz.com) 2-2
fax number 2-1
telephone number 2-1

bug reports
information needed 2-3

C
:classes-to-remove 4-14
CLOS 4-21
CLOS restrictions 4-21
CLOS runtime system 4-21
closed streams 4-26
command tables 4-12
common problems 4-23
compiler 4-4, 4-12, 4-21
compute-effective-method 4-21, 4-22
comtabs 4-12
conditional evaluation 4-7

I - 2 ALLEGRO CL for Windows: Professional Supplement

conditional read macros 4-7
Create Standalone Form (Item on Images submenu of File menu) 4-18
create-standalone-application 4-9, 4-14

arguments 4-10
creating a program shortcut or item for your application 4-11
customer support 2-1

D
debugger 4-4
debugging a runtime image 4-23
default-comtab 4-12
definition information 4-12
delete-package 4-16
deleting a package 4-16
demonstrations 4-3
development path 4-16

error handlers 4-17
format 4-17
:image 4-17
:package-directives 4-17
printer 4-17

dialog boxes 4-17
documentation information 4-12
dribble (function)

way to get transcripts of bugs and problems 2-4

E
email address

for bugs, questions, comments -- pc-support@franz.com 2-2
for sales and product information -- info@franz.com 2-2

ensure-generic-function 4-21
entry point 4-9
error 4-15
error handlers 4-14

development path 4-17
error-hook 4-25
error-output 4-13
error-output 4-26
errorset 4-14, 4-25

ALLEGRO CL for Windows: Professional Supplement I - 3

Index

eval 4-12
not available in Runtime image, use apply or funcall 4-13

examples
creating your own application step by step 4-18
smiley face 4-18

exits, unexpected 4-25
:external 4-16

F
failure 4-25
fax number for bug reports, questions and comments 2-1
features 4-7
foreign functions 4-27
format 4-14, 4-15

development path 4-17

G
garbage collections 4-23
generic-flet 4-22
generic-function 4-22
generic-labels 4-22
get 4-24
grid control widget 3-2
grid widget 3-2

documentation 3-2
example 3-3
files 3-3

H
how to report bugs and problems 2-3

I
:image 4-14, 4-17
:image-part-size 4-14
Interface Builder

and grid widget 3-3
intern 4-16
:internal 4-16

I - 4 ALLEGRO CL for Windows: Professional Supplement

interprocess communication (see socket interface) 3-1
:interruptible 4-14

K
:keep 4-16
keyword arguments 4-14, 4-16

L
licensing 4-2
lisp-text 4-17
loading modules into Runtime image 4-8

readme.txt file 4-8
lunar lander 4-4

M
macros 4-12
making an application 4-6
memory 4-23, 4-25
menu commands 4-12
method combination 4-21

N
:no-dialog-on-errors 4-15

O
objects always removed 4-12

P
:package-directives

:keep 4-16
development path 4-17
:external 4-16
:internal 4-16

packages 4-15
pathname 4-14
pc-support@franz.com (email address for bugs, questions, comments) 2-2
pcspr (PC Software Problem report)

what one is 2-2

ALLEGRO CL for Windows: Professional Supplement I - 5

Index

print-case 4-13
printer 4-14, 4-15

development path 4-17
problem

how to report 2-3
problems 4-23
proclaim 4-12
program shortcut or item

creating one for your application 4-11

R
raw-text-edit-comtab 4-12
read 4-16
read-case 4-13
reader 4-15, 4-17
readme.txt (file that contains forms to load modules) 4-8
:remove-clos-lambda- lists 4-15
:remove-format 4-15
remove-method 4-21
:remove-printer 4-15
:remove-reader 4-15
removing objects 4-12
Runtime Generator

defined 1-1, 4-1
inventory 4-2
licensing 4-2
may need sockaux.dll 3-2
optimizing savings 4-2
suitable applications 4-1
using 4-3

Runtime image
does not contain various modules listed in readme.txt 4-8

runtime system 4-21
contents 4-4

runtime-system
feature 4-7

I - 6 ALLEGRO CL for Windows: Professional Supplement

S
safety level of compiler 4-27
session-exit-functions 4-12
session-init-functions 4-12
session-variables 4-12
shadowing 4-24
size 4-13, 4-16, 4-25
smiley.lsp (example file) 4-18
sockaux.dll 3-2
socket documentation (where to find it) 3-1
socket support 3-1
socket.fsl (socket support file must be loaded) 3-1
source code

available with the Professional version 2-1
do not load 2-5
how to get 2-5
license addendum 2-5
what is distributed 2-5

stack overflow 4-17, 4-25
standalone application 4-1, 4-3, 4-6

create-standalone-application 4-9
defined 4-3
making 4-4
removing objects 4-12

support 2-1
symbol not bound 4-24
symbols

problems looking up 4-24
sys-error 4-15
system error 4-27

T
TCP/IP (see socket interface) 3-1
telephone number for customer support 2-1
template 4-22
terminal-io 4-13
terminal-io 4-26
text editor 4-4

ALLEGRO CL for Windows: Professional Supplement I - 7

Index

text-edit-comtab 4-12
toploop 4-24

package 4-13
trap-exits 4-14, 4-25
troubleshooting 4-23

U
unexpected exits 4-25
unwind-stack 4-14, 4-25
using the Runtime Generator 4-3

W
winsock.dll 3-2
with-added-methods 4-22

I - 8 ALLEGRO CL for Windows: Professional Supplement

[This page intentionally left blank.]

Allegro CL 3.0 for Windows: Read This First 1

Copyright 1995 by Franz Inc. All rights reserved. This is revision 1 of this document. This document has Franz Inc.
part number D-F-00-PC0-01-51025-31s and is dated October 25, 1995. The following notices apply:
Allegro CL 3.0 for Windows is a trademark and Allegro CL is a registered trademark of Franz Inc. Windows, Windows
95, Windows for Workgroups, and MS Windows are trademarks of Microsoft.

Read This First
This document introduces Allegro CL 3.0 for Windows.

Allegro CL 3.0 for Windows runs on either Microsoft Windows 3.1 or Windows for Workgroups 3.11 (both
of which require Win32s 1.30 or later), or on Windows NT Workstation 3.51 or Windows 95. Win32s 1.30 is
included with the Allegro CL distribution. Note that the product is not supported on earlier versions of Win32s
or versions of Windows NT prior to 3.51 Certain features are known not to work unless you have the specified
or later version of Windows software. Please note that you must have a specially licensed version of Allegro CL
3.0 for Windows to run in Japan.

1 Inventory

Thank you for ordering Allegro CL 3.0 for Windows. In the box, along with this document you should have received:

• A CD jewel case. The license agreement is printed on this envelope.Note that by opening the case, you
are agreeing to the license agreement. Please read the license agreement carefully.

• 2 volumes of wire-bound documentation.

• A Registration Card. Please send in this card! See section 2Registering yourself below.

• The License Agreement. By opening the sealed CD jewel case, you are agreeing to the terms of the License
Agreement. Please read it carefully.

• Win-Emacs order form. Win-Emacs is a Windows version of GNU Emacs. An interface to Allegro CL 3.0
for Windows is available.

• Professional upgrade order form. The Professional version of Allegro CL 3.0 for Windows has additional
features and extended support.

Additional fliers describing other Franz Inc. products and services may also be included. This document and the
items listed above are all that is required to install and use Allegro CL 3.0 for Windows.

2 Registering yourself

Please register by filling out the self-addressed registration form included in the Allegro CL 3.0 for Windows package
and mailing it to Franz Inc.

Note that only registered users can take advantage of Franz customer support(see section5 Support below).
Registered users also receive update notices and theFranz Tempo newsletter.

2 Allegro CL 3.0 for Windows: Read This First

3 Installation

Installation of Allegro CL 3.0 for Windows is described in section 2Installation on page 2 of theGetting Started
manual in volume 1 of the documentation.

Notes on installation:

• The Allegro CL distribution is on a CD. Win32s is also on the CD. Please contact Franz Inc. (ask for PC
Sales) if you do not have a CD driver and need diskettes instead. See section 7Contacting Allegro CL
Customer Support for information on contacting Franz Inc.

4 Documentation

The Online Manual describes Common Lisp, Common Graphics and CLOS. There are two volumes of printed docu-
mentation.

Each printed volume contains more than one manual. The manuals are separated by tabs. Each manual has its own
index and volume 2 contains a general index to all manuals. The first page of each volume describes the contents of
both volumes.

Start with theGetting Started manual in volume 1. It tells you how to install Allegro CL 3.0 for Windows and gives
other pertinent information. Also very useful when starting out is theProgramming Tools manual in volume 2.

See section 3Documentation of theGetting Started manual for more information on documentation for Allegro
CL 3.0 for Windows.

See the Version 3.0 Release Notes entry in the Online Manual for information on what is new and/or changed. Dis-
play this entry by choosingManual Contents from the Help menu after installing and starting Allegro CL 3.0 for
Windows and click on the link toVersion 3.0 Release Notes.

5 Support

There are two levels of support available for Allegro CL 3.0 for Windows. The first, sixty-day warranty support, is
available to all purchasers of Allegro CL 3.0 for Windows. The second, Franz Premier Support, is available for an
additional charge.

Sixty-day warranty support
All registered purchasers of Allegro CL 3.0 for Windows receive 60 days of free support, starting on the date of pur-
chase. (See section 2 above for information on registering.) If you have problems during the first 60 days, you may
contact Franz Inc. for assistance. See section 6Contacting Allegro CL Customer Support below for more informa-
tion on contacting Franz Inc.

Have the registration number (on the CD jewel case) handy when you call for warranty support.

Franz Premier Support
For an additional fee, Franz Premier Support is available for users of Allegro CL 3.0 for Windows. This program pro-
vides user with direct telephone and electronic mail support from Franz technical staff. Please contact Franz Inc. for
more information regarding Franz Premier Support. Call + 510-548-3600 (in the USA) for information on Franz Pre-
mier Support. Ask for PC Sales.

Allegro CL 3.0 for Windows: Read This First 3

World Wide Web site
Franz Inc. maintains a World Wide Web page. Its URL is

http://www.franz.com

The page contains information about Allegro CL 3.0 for Windows and other Franz Inc. products. Of particular interest
to users of Allegro CL 3.0 for Windows is the ability to access theAllegro CL 3.0 for Windows FAQ and patches.

The FAQ (Frequently Asked Questions) is a document written in question and answer format. It is updated regularly,
often with answers to questions that the Franz Inc. support staff notices are common. Hints and tips (about optimizing
code, for example) are also provided. We recommend that users visit the WWW page from time to time and examine
or download the current version of the FAQ. Patches are fixes to bugs and misfeatures in Allegro CL 3.0 for Windows.
They are provided when necessary. They are described on and can be downloaded from the WWW page.

6 Things to note about Allegro CL 3.0 for Windows

In this section we list known problems with release 3.0. More information about bugs may also be available on Franz
Inc. WWW page (see section 5 above).

1. You must use Win32s 1.30 for certain features to work.Common Control widgets and certain Allegro CL
3.0 for Windows dialogs require the functionality available in Win32s version 1.30 or later (1.30 is included
with the distribution). If you are running Windows 3.1 or Windows for Workgroups, please be sure to install
the version of Win32s supplied with the distribution. Windows 95 users do not need Win32s. Windows NT
users do not need Win32s either, but must have version 3.51 or later.

2. Compiled files must have extensionfsl. They will fail to load if they have a different extension.

3. Compiled Lisp (fsl) files from earlier versions will not load. fsl files generated by version 2.0 (or 1.0)
cannot be loaded into Allegro CL 3.0 for Windows.

Windows 95/Windows NT do not support 16-bit DLL’s
Only 32-bit DLL’s can be linked to Allegro CL 3.0 for Windows when run under Windows 95 or Windows NT Work-
station 3.51. (16-bit DLL’s can be used when running under Windows 3.1 or Windows for Workgroups.)

Editor
The in-Lisp editor will only work with files smaller than 32K bytes.

Franz has teamed up with Pearl Software to supply Win-Emacs, a Windows port of GNU Emacs version 19. Please
contact Franz for more information.

Note that Franz Inc. does not support Win-Emacs, except for problems arising from the interface between Allegro
CL and Win-Emacs. Other problems with Win-Emacs should be referred to Pearl Software at the address in the Win-
Emacs package. Pearl Software charges an annual fee for support.

The Toploop window (where the Lisp prompt first appears) is bound by the 32K limitation, but it will usually adjust
itself (by deleting from the top) when the limit is reached. Cutting and pasting to that window may confuse the auto-
matic adjustment, leading to an error. Calling for a new prompt (the leftmost item on the toolbar) will fix the problem.

Certain other dialogs (such as the History dialog and the Trace dialog) are not bound by the 32K limit. Long traces
are better done in the new Trace dialog.

2.0 patches (however obtained) should not be used
Patches that version 2.0 customers may have obtained from Franz Inc. whether in compiled form (asfsl files) or in
source form (perhaps from the FAQ) should not be loaded into version 3.0. In most cases, the functionality imple-
mented by the patch is already in version 3.0. If not, please contact Franz Inc. for assistance.

4 Allegro CL 3.0 for Windows: Read This First

Structure editor
The structure editor is no longer built into Allegro CL 3.0 for Windows. The directoryex\structed contains the source
for the structure editor and areadme.txt file which explains how to load it (assuming you want its features).

Professional and standard versions incompatible
You have the standard version. Image (img) and compiled Lisp (fsl) files from the standard version will not load into
the Professional version and image and compiled Lisp files from the Professional version will not load into the stan-
dard version.

7 Contacting Allegro CL customer support

All purchasers of Allegro CL 3.0 for Windows receive 60 days of support. Those customers who purchase Franz Pre-
mier Support (see section 5 above) are also eligible for support after the sixty-day warranty has expired.

If you have difficulties installing or using Allegro CL 3.0 for Windows, please do the following before you call cus-
tomer support:

• Read the section in the documentation that contains information about the functions, macros, or special
forms you are using.

• Look at the Allegro CL 3.0 for Windows FAQ (see section 5) to see if the problem is discussed there.

The best way to get support is to send e-mail topc-support@franz.com. Please include your registration number.

You also may call Franz Inc. for support if you are still covered by the sixty-day warranty or have purchased Franz
Premier Support. In either case, before you call, please:

• Be at your computer.

• Have your registration number handy (it is on the CD jewel case and the License Agreement).

• Have the exact text of any error messages that Allegro CL 3.0 for Windows displayed on your screen.

• Be able to describe your question or problem in detail.

The hours and telephone number of customer support are as follows. (The hours are subject to change without notice.)

Hours: 9 AM - 5 PM Pacific time, Monday through Friday (excluding Franz Inc. holidays)

Phone: + 510-548-3600 (customers outside North America, add international dialing access number and
the country code for the USA)

Fax: + 510-548-8253 (anytime)

Ask for PC Sales rather than PC Technical Support if you need replacement items or you need diskettes in place of
the CD.

8 Custom training and consulting services

Franz Inc. offers full training and custom software services. We offer corporate or group courses on programming with
Common Lisp, CLOS, and CLIM (the Common Lisp Interface Manager) on various platforms. Franz also offers cus-
tom software services, including aid in porting, optimizing, or extending your application. Please contact Franz Inc.
at the number above for more information on these services. Ask for PC Sales.

Allegro CL 3.0 for Windows Professional Version: Read This First 1

Copyright 1995 by Franz Inc. All rights reserved. This is revision 1 of this document. This document has Franz Inc.
part number D-F-00-PC0-01-51025-31p and is dated October 25, 1995. The following notices apply:
Allegro CL 3.0 for Windows is a trademark and Allegro CL is a registered trademark of Franz Inc. Windows, Windows
95, Windows for Workgroups, and MS Windows are trademarks of Microsoft.

Read This First
This document introduces Allegro CL 3.0 for Windows Professional.

Allegro CL 3.0 for Windows runs on either Microsoft Windows 3.1 or Windows for Workgroups 3.11 (both
of which require Win32s 1.30 or later), or on Windows NT Workstation 3.51 or Windows 95. Win32s 1.30 is
included with the Allegro CL 3.0 for Windows distribution. Note that the product is not supported on earlier
versions of Win32s or versions of Windows NT prior to 3.51 Certain features are known not to work unless you
have the specified or later version of Windows software. Please note that you must have a specially licensed ver-
sion of Allegro CL 3.0 for Windows to run in Japan.

1 Inventory

Thank you for ordering Allegro CL 3.0 for Windows. In the box, along with this document you should have received:

• A CD jewel case. The jewel case is sealed.By opening the case, you are agreeing to the terms of the
License Agreement. Please read the License Agreement carefully.

• 2 volumes of wire-bound documentation.

• TheProfessional Supplement manual (not wire bound).

• A Registration Card. Please send in this card! See section 2Registering yourself and ordering source
code below.

• The License Agreement. By opening the sealed CD jewel case, you are agreeing to the terms of the License
Agreement. Please read it carefully. The product serial number appears on the License Agreement.

• Source Code and Support Addendum. Sign and return this License Agreement addendum in order to
receive certain Allegro CL 3.0 for Windows source code and to be eligible for full support. See section 2
Registering yourself and ordering source code below.

• Win-Emacs (in a separate box). Win-Emacs is a Windows version of GNU Emacs. The version supplied
with Allegro CL 3.0 for Windows Professional Version includes theediti interface between Allegro CL 3.0
for Windows and Emacs. More information is contained in the Win-Emacs box.

Additional fliers describing other Franz Inc. products and services may also be included. This document and the
items listed above are all that is required to install and use Allegro CL 3.0 for Windows.

2 Registering yourself and ordering source code

Please register by filling out the self-addressed registration form included in the Allegro CL 3.0 for Windows package
and mailing it to Franz Inc. and by filling out the document entitled SOURCE CODE AND SUPPORT ADDENDUM
TO FRANZ INC. ALLEGRO CL 3.0 FOR WINDOWS PROFESSIONAL SOFTWARE LICENSE AGREEMENT.
Only registered users can take advantage of Franz customer support. The Addendum should be mailed to Franz
Inc., 1995 University Ave., Berkeley, CA 94704, USA. It can also be faxed to + 510-548-8253. Be sure all items are

2 Allegro CL 3.0 for Windows Professional Version: Read This First

filled in, including the serial number, the licensee information, and the shipping address at the end of the form. After
the License Addendum is received, support will be activated and a diskette containing the relevant source code will
be mailed to the shipping address specified on the License Addendum. See section 2.2Source code in theProfessional
Supplement for more information.

Even if you received version 3.0 as a free upgrade, you must sign and return the License Addendum
to receive support and the updated and additional source code modules that come with version 3.0.

3 Installation

Installation of Allegro CL 3.0 for Windows is described in section 2Installation on page 2 of theGetting Started
manual in volume 1 of the documentation.

Notes on installation:

• The Allegro CL 3.0 for Windows distribution is on a CD. Win32s is also on the CD. Please contact Franz
Inc. (ask for PC sales) if you do not have a CD driver and need diskettes instead. See section 7Contacting
Allegro CL Customer Support for information on contacting Franz Inc.

4 Documentation

The Online Manual describes Common Lisp, Common Graphics and CLOS. There are three volumes of printed doc-
umentation, two larger and wire bound, one (theProfessional Supplement) smaller and not wire bound.

Each wire-bound volume contains more than one manual. The manuals are separated by tabs. Each manual has its
own index and volume 2 contains a general index to all manuals in both wire-bound volumes (but not theProfessional
Supplement). The first page of each volume describes the contents of both volumes.

Start with theGetting Started manual in volume 1. It tells you how to install Allegro CL 3.0 for Windows and gives
other pertinent information. Also very useful when starting out is theProgramming Tools manual in volume 2.

See section 3Documentation of theGetting Started manual for more information on documentation for Allegro
CL 3.0 for Windows.

See the Version 3.0 Release Notes entry in the Online Manual for information on what is new and/or changed. Dis-
play this entry by choosingManual Contents from the Help menu after installing and starting Allegro CL 3.0 for
WIndows and click on the link toVersion 3.0 Release Notes.

5 Support

Professional version customers are entitled to one year of product support (from the date of purchase). You must send
the Registration Card and the License Addendum to be eligible for this support (see section 2Registering yourself
and ordering source code). See section 2.1Support in the Professional Supplement manual for more information
on support.

World Wide Web site
Franz Inc. maintains a World Wide Web page. Its URL is

http://www.franz.com

The page contains information about Allegro CL 3.0 for Windows and other Franz Inc. products. Of particular interest
to users of Allegro CL 3.0 for Windows is the ability to access theAllegro CL 3.0 for Windows FAQ and patches.

The FAQ (Frequently Asked Questions) is a document written in question and answer format. It is updated regu-
larly, often with answers to questions that the Franz Inc. support staff notices are common. Hints and tips (about opti-
mizing code, for example) are also provided. We recommend that users visit the WWW page from time to time and

Allegro CL 3.0 for Windows Professional Version: Read This First 3

examine or download the current version of the FAQ. Patches are fixes to bugs and misfeatures in Allegro CL 3.0 for
Windows. They are provided when necessary. They are described on and can be downloaded from the WWW page.

6 Things to note about Allegro CL 3.0 for Windows

In this section we list known problems with release 3.0. More information about bugs may also be available on Franz
Inc. WWW page (see section 5 above).

1. You must use Win32s 1.30 for certain features to work.Common Control widgets and certain Allegro CL
3.0 for Windows dialogs require the functionality available in Win32s version 1.30 or later (1.30 is included
with the distribution). If you are running Windows 3.1 or Windows for Workgroups, please be sure to install
the version of Win32s supplied with the distribution. Windows 95 users do not need Win32s. Windows NT
users do not need Win32s either, but must have version 3.51 or later.

2. Compiled files must have extensionfsl. They will fail to load if they have a different extension.

3. Compiled Lisp (fsl) files from earlier versions will not load. fsl files generated by version 2.0 (or 1.0)
cannot be loaded into Allegro CL 3.0 for Windows.

Windows 95/Windows NT do not support 16-bit DLL’s
Only 32-bit DLL’s can be linked to Allegro CL 3.0 for Windows when run under Windows 95 or Windows NT Work-
station 3.51. (16-bit DLL’s can be used when running under Windows 3.1 or Windows for Workgroups.)

Editor
The in-Lisp editor will only work with files smaller than 32K bytes.

Franz has teamed up with Pearl Software to supply Win-Emacs, a Windows port of GNU Emacs version 19. (You
should have received a copy in a separate box.)

Note that Franz Inc. does not support Win-Emacs, except for problems arising from the interface between Allegro
CL 3.0 for Windows and Win-Emacs. Other problems with Win-Emacs should be referred to Pearl Software at the
address in the Win-Emacs package. Pearl Software charges an annual fee for support.

The Toploop window (where the Lisp prompt first appears) is bound by the 32K limitation, but it will usually adjust
itself (by deleting from the top) when the limit is reached. Cutting and pasting to that window may confuse the auto-
matic adjustment, leading to an error. Calling for a new prompt (the leftmost item on the toolbar) will fix the problem.

Certain other dialogs (such as the History dialog and the Trace dialog) are not bound by the 32K limit. Long traces
are better done in the new Trace dialog.

2.0 patches (however obtained) should not be used
Patches that version 2.0 customers may have obtained from Franz Inc. whether in compiled form (asfsl files) or in
source form (perhaps from the FAQ) should not be loaded into version 3.0. In most cases, the functionality imple-
mented by the patch is already in version 3.0. If not, please contact Franz Inc. for assistance.

Structure editor
The structure editor is no longer built into Allegro CL 3.0 for Windows. The directoryex\structed contains the source
for the structure editor and areadme.txt file which explains how to load it (assuming you want its features).

Professional and standard versions incompatible
You have the Professional version. Image (img) and compiled Lisp (fsl) files from the standard version will not load
into the Professional version and image and compiled Lisp files from the Professional version will not load into the
standard version.

4 Allegro CL 3.0 for Windows Professional Version: Read This First

7 Contacting Allegro CL customer support

If you have difficulties installing or using Allegro CL 3.0 for Windows, please do the following before you call cus-
tomer support:

• Read the section in the documentation that contains information about the functions, macros, or special
forms you are using.

• Look at the Allegro CL 3.0 for Windows FAQ to see if the problem is discussed there.

The best way to get support is to send e-mail topc-support@franz.com. Please include your registration number.

You may also send a fax or call Franz Inc. for support. Before you call, please:

• Be at your computer.

• Have your registration number handy (it is on the CD jewel case and the License Agreement).

• Have the exact text of any error messages that Allegro CL 3.0 for Windows displayed on your screen.

• Be able to describe your question or problem in detail.

The hours and telephone number of customer support are as follows. (The hours are subject to change without notice.)

Hours: 9 AM - 5 PM Pacific time, Monday through Friday (excluding holidays)

Phone: + 510-548-3600 (customers outside North America, add international dialing access number and
the country code for the USA)

Fax: + 510-548-8253 (anytime)

More information on support can be found ins section 2.1Support of theProfessional Supplement manual.

Ask for PC Sales rather than PC Technical Support if you need replacement items or you need diskettes in place of
the CD.

8 Custom training and consulting services

Franz Inc. offers full training and custom software services. We offer corporate or group courses on programming with
Common Lisp, CLOS, and CLIM (the Common Lisp Interface Manager) on various platforms. Franz also offers cus-
tom software services, including aid in porting, optimizing, or extending your application. Please contact Franz Inc.
at the number above for more information on these services. Ask for PC Sales.

	Introduction
	Copyright
	Volume 1 Preface
	Getting Started
	Table of Contents
	1 Introduction
	2 Installation
	3 Documentation
	4 When Allegro CL starts up
	5 Features of Microsoft Windows
	6 Getting information and Patches
	7 Example files
	8 Anomalies and things to note
	9 Support
	Index

	Lisp Introductory Guide
	Contents
	Table of Contents
	Preface
	1 Introduction
	2 Basic Data Manipulation
	3 Arithmetic
	4 List manipulation
	5 Introducing input and output
	6 Binding and scope
	7 Conditionals
	8 Iteration and recursion
	9 Data structures
	10 Lambda
	11 Macros
	12 List storage
	13 An introduction to CLOS
	14 Errors
	A Glossary
	Index

	Interface Builder
	Table of Contents
	1 Getting started with the Interface Builder
	2 Tutorial
	3 Menus and mouse actions
	Index

	Foreign Function Interface
	Table of Contents
	1 Introduction and some examples
	2 FFI functionality
	3 Reference guide
	4 DDE interface
	5 Windows typedefs and API's
	Index

	Volume 2 Preface
	Programming Tools
	Table of Contents
	Preface
	1 Introduction
	2 The toploop
	3 The Text Editor
	4 The Inspector
	5 Trace, breakpoint and profile
	6 The debugger
	7 the stepper and the watch facility
	8 CLOS tools
	9 Comtabs
	A Editor keybindings
	Index

	General Index
	Preface
	Index

	Professional Supplement
	Table of Contents
	1 Introduction to the Professional version
	2 Support and source code
	3 Sockets and Grid Widget
	4 Runtime Generator
	Index

	Read This First (standard)
	Read This First (Professional)

