
 44

PHP Hypertext Preprocessor

Written by Levente Hunyadi1
Translated by Levente Erős

1. INTRODUCTION .. 44

2. PHP BASICS... 45
2.1 PHP SCRIPTS.. 46
2.2 TYPES .. 47
2.3 OPERATORS ... 48
2.4 VARIABLES .. 49
2.5 ARRAYS... 49
2.6 WRITING THE OUTPUT.. 50
2.7 CONTROL STRUCTURES.. 50
2.8 REFERENCING EXTERNAL FILES ... 51
2.9 FUNCTION DEFINITIONS ... 51
2.10 PREDEFINED VARIABLES.. 51

3. THE MAIN ORACLE8 FUNCTIONS ... 54
3.1 OCI_CONNECT, OCI_PCONNECT.. 54
3.2 OCI_CLOSE... 55
3.3 OCI_PARSE ... 55
3.4 OCI_BIND_BY_NAME ... 55
3.5 OCI_EXECUTE .. 55
3.6 OCI_FREE_STATEMENT .. 55
3.7 OCI_FETCH_ARRAY.. 55
3.8 OCI_NUM_FIELDS... 56
3.9 OCI_FIELD_NAME... 56
3.10 OCI_FETCH_ALL... 56
3.11 OCI_ERROR .. 56

4. SAMPLE APPLICATION... 56
4.1 LISTING (VEHICLES.PHP) .. 58
4.2 VEHICLE DETAILS PAGE (VEHICLE-DETAILS.PHP)... 60
4.3 DATABASE ACCESS (SERVICES.PHP)... 61
4.4 QUERIES (QUERIES.PHP)... 63
4.5 OUTPUT (LAYOUT.PHP) .. 64

1. Introduction
Web pages generated dynamically on the server side are widely used nowadays. It's also quite
typical that a database management system (DBMS) can be found behind this dynamic content.
PHP (abbreviating Personal HomePage) is a freely accessible and universal command language,
specialized mostly for web-related development projects. PHP is accessible for many different
platforms (including Linux, Windows, Mac OS X and several other Unix-variants), it's easy to

1 This handout is based on the previous work of Bálint Laczay, Gábor Salamon, and Gábor Surányi. I'd like to thank
Levente Erős, István Madari and Gábor Zavarkó for their comments on this work.

 45

learn and it's organically embedded into markup language sources of web pages. With all these
properties PHP is ideal for web-related development. The Apache web server (serving nearly
60% of active websites) has a built-in PHP module in more than 35% of all the cases.2 PHP can
cooperate with 8 further well-known web server applications and 22 DBMSs, which is another
reason for its popularity beyond its simplicity. PHP includes several tools for text processing,
ranging from regular expressions to XML tools. Even more complex tasks, like generating
images, PDF documents or compressing files can be carried out by PHP's different function
libraries.

The steps of running a PHP script are as follows:

1. The user's browser sends an HTTP-request to the web server addressing a page with the
extension php.

2. This request – given the settings are appropriate – results in the web server giving the
control to the PHP interpreter.

3. The interpreter processes the page regarding it as a PHP script and returns the output of
the script to the web server.

4. The web server forwards this output to the user's web browser.

Database access is carried out by the previously mentioned function libraries. Most database
managers have a so-called native function library. Unfortunately, these libraries differ DBMS by
DBMS; each of them has to be used on a different way. There is however a library, the standard
ODBC (Open Database Connectivity) library that makes it possible to access the database in a
uniform way. Its major drawback is its low efficiency compared to native function libraries.
Furthermore, ODBC is unable to exploit the special features of different DBMSs.

Our PHP application is going to connect to an Oracle database server through the native
Oracle8 interface.3 The PHP interpreter provides this interface through the OCI8 (Oracle Call
Interface) library, thus OCI8 has to be installed on the web server as well.

To learn this new aspect of database usage it's necessary to learn a whole new programming
language. Thus, we illustrate the usage of the different methods used during the workshop on a
sample PHP application. This application is accessible on the website of the course.

2. PHP basics
In the following few sections we give a basic insight into PHP. Our goal is to deliver a minimal
knowledge on the subject that is enough to succeed in the entry test on the one hand and which,
on the other hand makes it easier to understand the entire PHP documentation. For a complete
review on the features of PHP and all its function libraries, see the website
http://www.php.net/manual/en/. Nonetheless, after understanding the sample script by the end of the
section you should be able to fulfill the requirements of the workshop.

We assume that you already have a basic knowledge of the (X)HTML and C languages, since
their presentation is far beyond the scope of this handout. To get to know the basics of HTML,

2 According to reports Web server survey (netcraft.com) and Apache module report (securityspace.com) published in
December 2007.
3 There is also a function library called Oracle, which is a predecessor of Oracle8 with way less capabilities than
Oracle8.

 46

XHTML, and web page forms see the documentation on http://www.w3.org/TR/html4, and
http://www.w3.org/TR/xhtml1.

XHTML and HTML are almost identical from the perspicuity and automatic processing points
of view, but XHTML is more favorable, since it is well formed (in XML means), i.e. the
restrictions of XML apply to XHTML codes. The main differences between HTML and XHTML
are as follows:

• While HTML allows overlapping tags, XHTML does not. For example, in XHTML,
bold <i>bold italic</i><i> italic</i> has to be used instead of bold
<i>bold italic italic</i>.

• Self-closing tags like
 are illegal in XHTML, for example,
 has to be used
instead of
.4

• XHTML tags always have to be closed (for example, after <p> there has to be a </p>
somewhere in the code).

• XHTML tags are written by lowercase letters (<html> instead of <HTML>).

2.1 PHP scripts
PHP pages are text documents and have to be placed on the web server the same way as regular
HTML documents. Due to their php extensions the server interprets these files as PHP pages. A
PHP page consists of an alternating series of script parts (to be executed) and HTML parts.5

HTML parts don't have to be indicated explicitly, since HTML is default. These parts may
contain arbitrary markup language elements which will be included word-by-word in the output
webpage returned to the web server application. PHP commands can be written either by capitals
or by lowercase letters. These commands have to be placed between <?php and ?> marks.
Commands are separated by ; (semicolons) just like in PERL or C. Comments can be typed
between the marks /* and */ or after mark // or # until the end of the line. Blocks of commands
are introduced by { and closed by }.

In the following, we introduce a simple PHP page for listing the multiples of seven:

4 In XHTML, we can also use the long forms of self-closing tags, like
</br>, but these forms confuse browsers
that can only interpret HTML and not XHTML. Thus in practice, short forms are used just like in this handout.
5 Notepad++ (http://notepad-plus.sourceforge.net/) is a universal and easy-to-use tool for editing PHP pages (and
other kinds of text documents). For completing the assignments given you in class we highly recommend the usage
of a software that supports PHP and XHTML editing.

 47

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Multiples of Seven</title>
</head>
<body>
 <table>
 <tr><th>x</th><th>7*x</th></tr>
 <?php
 for ($i = 1; $i <= 10; $i++) {
 print "<tr><td>";
 print $i;
 print "</td><td>";
 print 7*$i;
 print "</td></tr>\n";
 }
 ?>
 </table>
</body>
</html>

2.2 Types
The most commonly used types in PHP are boolean, integer, float, string, and array.6 Logical
values can be defined by constants TRUE and FALSE (or true and false), numbers are defined by
their decimal values on the easiest way, while strings are defined between apostrophes (') or
quote marks ("). When using apostrophes the interpreter doesn't changes the value of the string,7
while in the case of quote marks the references to variables (marked by $) will be substituted and
a few escape sequences will also be interpreted. Thus

• The value of $a = ’\n’ will be the sequence of a backslash and letter n instead of a line
break,

• The value of $b = "{$a}\n{$a}" is going to be two sequences of a backslash and letter
n (substitution of the value of the variable) divided by a line break (interpreting the escape
sequence).

The type of a value or a variable is (almost) never given explicitly, since types are decided by the
interpreter based on the environment in which the value or variable is used. Type conversion is
carried out automatically when necessary. In the following, we give a list of the most common
type conversion cases:

• Number to string: the string is going to be the decimal form of the number, with
exponential notation in the case of a large number. For example, 134.7 is converted to
"134.7", while 10000000*10000000 is converted to "1E+014".

6 PHP has three further types, namely object (the notion of class known from object-oriented languages is also
known in PHP, the object type is the overall name of the different class instances), resource (which is for storing
references to exterior resources (e.g. a database connection)), and the NULL type (one instance of which is the
special NULL value known from SQL).
7 If we'd like to insert an apostrophe or a quote mark in our string, sequence \' or \" has to be used. Similarly, to
include a \ sequence \\ has to be used. Other characters, however, don't have any special meaning.

 48

• String to number: just like when using strtod() in C, the value of the number is going to
be the number found at the beginning of the string, for example "3 little pigs" is
converted to 3, while "route 66" is converted to 0, since there is no number at the
beginning of the string.

• Boolean to string: FALSE is converted to an empty string, while TRUE is converted to the
string "1".

• String to boolean: "" and "0" are converted to FALSE, everything else is converted to
TRUE. This means that "true" and "false" are both converted to TRUE.

• Number to boolean: 0 and 0.0 are converted to FALSE, all the other numbers are
converted to TRUE.

• Boolean to number: FALSE is converted to 0, TRUE is converted to 1.
• Array to boolean: an empty array is converted to FALSE, while an array containing at least

one element is converted to TRUE.
Of course we can carry out type conversions explicitly as well, by the cast operator known from
C: the value of $i = (int) 1.7 is thus 1 while the value of $s = (string) 2.5 is "2.5"

2.3 Operators
The most important operators in PHP are:

• Arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division of float
numbers), % (division remainder), - with a single operand (negation): the operands of
these operators are numbers. Furthermore, operator ++ is used for pre-incrementing and
post-incrementing, and -- is used for pre-decrementing and post-decrementing values of
variables, respectively. Division of integers can be implemented by a division remainder
calculation and a subtraction or by a truncation.

• Assignment operator: =. On the left side there has to be a reference to a variable. Its forms
contracted with other operators (+=, -=, etc, just like in C) can also be used.

• Comparison operators: ==, !=, <, <=, >, >=. If the types of the operands are different an
automatic type conversion is carried out. If one of the values is a logical value the
interpreter converts both of the operands to logical values. When comparing a number to
a string the string is converted to a number. Two strings containing numbers are
converted on the same way. The comparison of two strings can be done lexically or by a
numeric comparison depending on the values stored in the strings.

• Comparison without type conversion: ===. It works the same way as operator == but
without making type conversions: if the types of the operands are different it returns
FALSE. Its negation is operator!==.

• Concatenation of strings: . (dot). It returns the concatenation of its two string operands.
The result of $a . $b is the same as the result of "{$a}{$b}".

Some examples of using these operators:
• The value of 4/8 is 0.5 (number).
• The value of 4/"6hours" is 0.666667 (number), and the value of 5 + "3 little pigs"

is 8 (number), since these operators convert their operands to numbers.
• The value of "FALSE" != FALSE is TRUE (boolean), since one of the operands of != is a

boolean value, so the interpreter converts both operands to booleans.

 49

• The value of (10 * "1 dalmatian") . "1 dalmatian" . "s" is "101 dalmatians".

2.4 Variables
The (case sensitive) name of a variable in PHP consists of letters, numbers and underscores (_).
Variable names must not begin with a number. Referencing a variable is in the form
$variableName. Variables can be used without a declaration, since their types are decided when
being assigned a value. For example, after $b = 4 variable $b is going to be a number and then
after $b = $b . "2 is the answer" variable $b is going to be a string with a value of "42 is
the answer". At this point the value of the expression $b + 3 is 45, since the value of $b
becomes a number again. It's important to note that the conversion is only used for evaluating the
operands and it does not change the type nor the value of the variable. So the value of $b remains
"42 is the answer".

2.5 Arrays
PHP arrays are associative, which means their indices can be arbitrary values (not necessarily
non negative integers). The easiest way to create an array is to use the keyword array, for
example: $fruit = array("pineapple", "avocado", "orange"). As a result of this
expression array $fruit will have three elements with element "pineapple" belonging to the
index value 0, element "avocado" belonging to the index value 1, and element "orange"
belonging to the index value 3. If we don't want to use numbers as index values, we can, for
example, do the following:
$vegetable = array(
 "c"=>"carrot", "t"=>"turnip", "b"=>"beet"
);

We can also use multi-dimensional arrays, like:
$data = array(
 "fruits" => array("pineapple", "orange", "plum"),
 "colors" => array("yellow", "orange", "blue")
);

To get the value of a certain element of an array the corresponding index value has to be put into
brackets. The value of the following expression is thus "orange":
$data["fruits"][1]

This way we can also insert new elements into the array, for example:
$vegetable["p"]="pea"

or simply:
$fruit[] = "red currant"

In this case PHP generates the new index automatically based on the highest numerical index in
the array.

 50

2.6 Writing the output
It's pretty common that we would like to insert simple text into the page returned to the browser.
In this case using marks <?php and ?> continuously is likely to result in a hard readable source .
Let's see an example for this. (As you might assume, function getdate returns an associative
array, with its index "hours" containing the current time in hours.)
<?php $date = getdate(); ?>
<p>Welcome, good
<?php if ($date["hours"]<12) { ?>morning<?php } else { ?>afternoon<?php } ?>
!</p>

Our other option for writing the output is to use the PHP commands print or echo. The
expression after the keyword is converted to a string. Our previous example by using echo:
<?php $date = getdate(); ?>
<p>Welcome, good
 <?php
 if ($date["hours"] < 12) {
 echo("morning");
 } else {
 echo("afternoon");
 }
 ?>!
</p>

2.7 Control structures
Control structures of PHP might remind one to those of other languages. Structures if ... else
..., while, do ... while, for, break, continue, switch are used exactly the same way as in
C. Structure elseif works the same way as the sequence else if.

Structure foreach is used for walking through the values of all the elements stored in the first
dimension of an array. The parameters of this structure are an array and one or two variables. As
an example, let's look at the following code:
foreach ($fruit as $name) echo("I like {$name}
\n");

and its output:
I like pineapple

I like avocado

I like orange

I like red currant

The following code copies the contents of array normal to array reversed swapping the keys
and values. (Of course, it only works exactly this way if the values of the original array are all
unique.)
foreach ($normal as $key => $value) $reversed[$value] = $key;

 51

2.8 Referencing external files
Keywords require and include are both used for including external files. require works the
same way as the C preprocessor, that is the included file is extracted before its execution, while
in the case of include the file is only extracted when the execution reaches the command. As a
consequence, by include even variable names can be used. What might be surprising (and that's
why we call your attention to it) is that PHP commands in the included files have to be put
between the marks <?php and ?> regardless of whether being called from inside or outside the
PHP context, otherwise the interpreter will not process these commands.

2.9 Function definitions
The definition of a function begins with the keyword function. After that come the name of the
function and a list of its formal parameters. As we mentioned earlier there's no need to declare the
types of any parameters and the type of the return value. Parameter names have to be preceded by
$ (dollar sign) like in the case of variable names. In PHP parameters can be passed by value and
by reference as well. To pass a parameter by reference an & (ampersand) has to be put right
before the dollar sign of the variable name. Keyword return is used to return from the function,
optionally followed by the expression generating the return value. More than one value can be
returned by arrays or by output parameters, for example:
function operations($a, $b, &$c) {
 $c = $a + $b;
 $d = $a - $b;
 return array($c, $d);
}

The main program of the PHP script consists of the commands outside of function bodies.
Variables defined outside of function bodies are invisible inside functions (by default). If a
function still needs such a variable, the variable can be passed to the function as a parameter or
imported to the body of the function using the keyword global.

2.10 Predefined variables
PHP provides plenty of predefined variables for the programmer. Many of them contain data
about the system and the script, but those we are interested in the most are the ones supporting
communication between web pages. These variables have three types:

1. values of parameters passed explicitly in the URL of the request
2. values related to fields of the form on the page that induces the request
3. values of cookies8

8 HTTP is a stateless protocol. This means that after responding a request the server doesn't store any information it
could use later (e.g. for responding the next request). In database management and other applications, however, we
might need to store some information (e.g. the contents of the shopping cart) among the many requests. Basically,
there are two solutions for solving this problem: using sessions and using client-side applications. In the case of
sessions the information is stored on the server and is reached by a key linked to every single request, while in the
case of client-side applications all the information is stored on the client and only the necessary pieces of information

 52

In the following, we only describe the first two types, as we are only going to use these two types
of variables.

When the browser sends an HTTP request to the server it has the opportunity to pass variables.
These parameters are accessible for the application running on the server (in our case the PHP
script). This way the server is able to generate its response dynamically, depending on parameters
of the request. The parameters of an HTTP request consist of a name and a value belonging to it.

When submitting a form on an HTML page its fields appear as the parameters of the request.
The name of the parameter is stored in the name attribute of the field, while its value is stored in
the value attribute of the field, which in some cases (e.g. an input field) is set by the user.
Checkboxes only appear among the parameters of the request if checked when submitting the
form. Similarily, from all the elements of a select list (form element select) the only element the
value of which appears among the parameters of the HTTP request is the one selected. Form
element hidden does not appear in the browser, but its value is sent to the server as a parameter
of the request just like other parameters. This way hidden variables are suitable for passing
identifiers for example.

There are two ways of passing form data, GET and POST. When using GET mode the form
data sent appears in the URL of the request (after the ? in the URL). In POST mode the form data
appears in the body (payload) of the request. Accordingly, all the data from the form is stored in
the global arrays $_GET and $_POST, the keys of which are the values defined as the values of
name attributes of form elements. Since $_GET stores the values of all the parameters in the URL
parameters linked to the request can be retrieved from this array. For example, in the case of the
URL index.php?id=82 array $_GET will contain the value 82 (as a string) at key id.9 Besides
$_GET and $_POST there is a third array called $_REQUEST by which we can access our data
without knowing whether it comes from a GET or a POST kind of source.

PHP makes two changes to names of form variables. First, if a name contains an array
indexing operator ([]) the value will be stored in $_GET or $_POST as an element of an array
corresponding to the name. This makes it possible, for example to process more than one selected
elements of a list. Second, as . (dot) is not allowed in variable names, PHP changes its
occurrences to _ characters (underscores).

To understand the above let's take a look at the following complex example. Let the HTML
source of a registration web page (register.html) be the following:

are linked to the request. Java applets are typical cases of client-side applications, while sessions can be implemented
even in PHP.
9 Since the processing page references elements of $_GET and $_POST pretty often, PHP can provide the programmer
with the values of the first dimension of the arrays as values of variables with the names of corresponding keys. This
however, emerges security-related questions, thus this feature is switched off in newer PHP versions by default (and
during the workshop as well).

 53

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Registration page</title>
</head>
<body>
<form action="register.php" method="post">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" /></td>
 </tr>
 <tr>
 <td>E-mail</td>
 <td><input type="text" name="email" value="yourname@example.com" /></td>
 </tr>
 <tr>
 <td>Beer:</td>
 <td>
 <select multiple="multiple" name="beer[]">
 <option value="Miller">Miller</option>
 <option value="Guinness">Guinness</option>
 <option value="Stuttgarter">Stuttgarter Schwabenbräu</option>
 </select>
 </td>
 </tr>
 <tr>
 <td><input type="submit" /></td>
 </tr>
 </table>
</form>
</body>
</html>

Let the processing page register.php be the following:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Successful registration</title>
</head>
<body>
<p><?php
 print "Dear {$name}, you\'ve registered with the e-mail address {$email}\n";
 $drinks = implode(', ', $beer);
 print "The beers you\'ve ordered are the following: {$drinks}."
?></p>
</body>
</html>

If the user enters Sir Arthur Conan Doyle as his name and arthur@example.com as his
address on register.html, checks the beers Miller and Guinness and submits the form
register.php will generate the following HTML code:

 54

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Successful registration</title>
</head>
<body>
<p>Dear Sir Arthur Conan Doyle, you've registered with the e-mail address
arthur@example.com.
The beers you've ordered are the following: Miller, Guinness.</p>
</body>
</html>

As you can see, if the user selects more than one element of the form field select at the same
time, in the HTTP request a name-value pair is going to be generated for every single element
(e.g. beer[]="Miller" and beer[]="Guinness"). When the PHP script gets a request
including these parameters, it creates the array beer and puts the strings "Miller" and
"Guinness" in it as elements indexed by 0 and 1. Command implode concatenates the elements
of its input array.

3. The main Oracle8 functions
In this section, we roughly introduce the main Oracle8 functions. Although there are no type
names in a PHP code, in our handout for each input parameter, we will note the type the
parameter is handled as by its function. If an input parameter's type is different from the type
expected by the function, it is converted to the desired input type automatically. In our list of
functions we also note the return types of functions; however the same function might produce
return values of different types. Most of the present functions return a special value in case of a
successful database operation, and a boolean value (FALSE) otherwise. According to our syntax
parameters in brackets ([]) are optional, they can be omitted. For a more detailed description of
Oracle8 functions see the online documentation.

3.1 oci_connect, oci_pconnect
Syntax: resource oci_connect(string $username, string $password

[, string $db])
 resource oci_pconnect(string $username, string $password

[, string $db])
Function: connects the database
Return value: descriptor of the connection or FALSE in case of an error

These two functions only differ at one point: function oci_connect always opens a new
connection between the web server and the database which has to be closed by function
oci_close, while oci_pconnect only opens a connection if there is no open connection with the
same parameters. This kind of connection can't be closed down by PHP, it will remain open even
after the script in the page stops running, and therefore it's not recommended to use
oci_pconnect in systems under high stress level.

 55

3.2 oci_close
Syntax: bool oci_close(resource $connection)

Function: disconnects from database

3.3 oci_parse
Syntax: Resource oci_parse(resource $conn, string query)

Function: prepares an SQL statement for execution
Return value: descriptor of the executable statement, FALSE in case of an error

3.4 oci_bind_by_name
Syntax: bool oci_bind_by_name(resource $statement, string $ph_name,

mixed &$variable[, int $length[, int $type]])
Function: binds a PHP variable to an Oracle value
Return value: TRUE or FALSE depending on the success of the operation

Parameter variable is the PHP variable; ph_name defines what to bind the variable to in the
PHP statement. Parameter length is the maximal length if the given variable, if -1, the actual
length will be the maximal length.

3.5 oci_execute
Syntax: bool oci_execute(resource $statement[, int $mode]);
Function: executes a prepared statement
Return value: TRUE or FALSE depending on the success of the operation

If mode is the default OCI_COMMIT_ON_SUCCESS, this function automatically commits after a
successful execution of the statement. If we'd like to use Oracle's default transactional behavior
OCI_DEFAULT has to be declared as the mode explicitly. In this case oci_commit and
oci_rollback can control transactions.

3.6 oci_free_statement
Syntax: bool oci_free_statement(resource $stmt)
Function: frees resources related to a prepared statement
Return value: TRUE or FALSE depending on the success of the operation

3.7 oci_fetch_array
Syntax: int oci_fetch_array(resource $stmt[, int $mode])
Function: reads the next row of the result of the executed (SELECT) statement
Return value: FALSE if the operation is unsuccessful, otherwise an array corresponding to the

actual row of the result

If mode is OCI_ASSOC the return value is an associative array with the column names as keys. If
mode is OCI_NUM the return value is an array indexed by integers (starting with zero). The default

 56

value is OCI_BOTH, that is, the data in the returned array can be reached by both the column
names and the column indices. OCI_RETURN_NULLS can be combined with all of the above
mentioned modes (by character +) resulting in the returned array including empty values, that is,
even empty cells will be included in the returned array with a value of NULL. (Comparison to a
NULL value can be carried out by operator === or by function is_null.)

3.8 oci_num_fields
Syntax: int oci_num_fields(resource $stmt)
Function: gets the number of columns of the executed (SELECT) statement
Return value: number of columns

3.9 oci_field_name
Syntax: string oci_field_name(resource $stmt, int $col)
Function: gets the name of the column corresponding to the given column number from

the result of the executed (SELECT) statement (the first column number is 1)
Return value: name of column

3.10 oci_fetch_all
Syntax: int oci_fetch_all(resource $stmt, array &$variable)
Function: puts all the rows of the result of the executed (SELECT) statement into a two-

dimensional array. The first index is always the name of the column (written by
capitals) while the second is the row number (starting from zero).

Return value: FALSE in case of an unsuccessful operation, otherwise the number of rows in the
result.

As a side effect of automatic type conversion 0 (zero) and FALSE can be confused with each
other, as both of these values are valid return values of the function. Thus, it's worth using
comparison operator ===, since it requires type matching.

3.11 oci_error
Syntax: array oci_error(resource $stmt|$conn)
Function: gets the properties of the last error
Return value: an array of error properties

If we'd like to get the properties of an error made by oci_parse the parameter should be the
descriptor of the database connection, while in the case of an error made by an oci_execute
command the parameter is the descriptor of the prepared statement.

4. Sample application
In this section, we introduce some parts of the web pages of an imaginary transport company.
The web pages are not public; they are used by the company for registering and tracing their
orders. In our example, we will view a list of vehicles (vehicles.php) and some more detailed

 57

information on the vehicles (vehicle-details.php). The example is not complete since our goal is
to illustrate how to get the information we need from a database and then publish it on a web
page. We will also show how to do this using HTML form parameters. See comments of the
source code for explanations on the most important constructs.

As you might notice data access and presentation are separated in the application. While
services.php (section 4.3) contains general services for database access, queries.php (section 4.4)
contains the queries to be used. Both of these two files are placed outside of the publicly
accessible public_html directory structure. This way if the PHP interpreter is down and an
attacker is able to view the PHP source, the database-access information and database queries
will still be hidden from him. The files for presenting the queried data (sections 4.1, 4.2, and 4.5)
are, however, placed inside the public_html directory structure importing the files for database
access by the appropriate PHP commands. Separating data access and presentation assures that
the modifications made to the data access or presentation part stay local and don't affect the
whole application.

The directory structure of the sample application is the following:
php_include
 services.php
 queries.php
public_html
 layout.php
 vehicles.php
 vehicle-details.php

 58

4.1 Listing (vehicles.php)
This web page lists the vehicles of the company in a table. Each registration number in the table
is a link to a page containing detailed information on the corresponding vehicle. Above the list of
vehicles the page has a list containing the days of the week. From this list more items can be
selected at the same time. When submitting the page the web page filters the table and only lists
the vehicles purchased on the selected days of the week.

Two outer files are imported by PHP
structure require.

<?php

require("../../php_include/services.php");
require("../../php_include/queries.php");

Function get_contents queries all the
data needed by the viewing page from
the database. Its return value is an
associative array with its keys
indexing different kinds of data from
queries and HTML forms. Under the
key vehicles for example the array
stores information on the queried
vehicles where variable $vehicles is
an array itself, with keys of numbers
and values of records storing the
properties of vehicles. The query
itself is executed by function
get_vehicles. If we'd like to find out
whether the query was successful or
not we can use function print_r
which prints a complex variable (e.g.
an array the elements of which are
also arrays, etc.)

function get_contents() {
 // getting parameter days_of_week from POST source
 $days_of_week = get_array_value_of_param('days_of_week');

 // connecting the database before database operations
 $conn = db_connect();
 // querying data
 $vehicles = get_vehicles($conn, $days_of_week);
 // closing the connection after all the database operations
 db_disconnect($conn);

 $contents = array(
 'days_of_week' => $days_of_week,
 'vehicles' => $vehicles
);
 // print_r($contents);
 return $contents;
}

The function on the right gets the
multiple values (e.g. all the selected
elements of a list) of the name
attribute of a form sent by method
POST. Function array_key_exists
checks whether the value of the first
parameter is a key of the associative
array passed in the second parameter.

function get_array_value_of_param($name, $default = array()) {
 if (array_key_exists($name, $_POST) &&
 is_array($_POST[$name])) {
 return $_POST[$name];
 } else {
 return $default;
 }
}

 59

Function print_contents formats the
data returned by get_contents.
Function print_days generates a list
of the days of the week highlighting
the days the keys of which can be
found in array $days_of_week. (This
variable is filled up by function
get_contents based on which list
elements were selected by the user on
the HTML form sent)

As you can see, instead of using
commands echo and print we step out
of PHP mode in the body of the
function and use simple HTML for a
while before re-entering PHP mode.
This solution is practical if there are
many HTML commands in a row and
relatively few PHP commands.

It's important to note some
problems emerged by special
characters. There are a few characters
resulting in documents producing non
well-formed and often errorneous
outputs when directly embedded into
HTML. One of these is &
(ampersand) character used for
introducing so-called HTML entities
like – (dash). The character
set of URLs are also limited. If the
data to be presented contains special
characters these have to be converted
by functions htmlspecialchars (in
case of embedding data in HTML
output) and urlencode (in case of
embedding data in a URL).

function print_contents($contents) {
 $days_of_week = $contents['days_of_week'];
 ?>
 <form method="post">
 <table>
 <tr>
 <td>Show vehicles purchased on</td>
 <td><select name="days_of_week[]" multiple="multiple">
 <?php print_days($days_of_week); ?>
 </select></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" />
 </td>
 </tr>
 </table>
 </form>
 <table>
 <tr>
 <th>Numberplate</th>
 <th>Date of purchase</th>
 <th>Date of last maintenance check</th>
 </tr>
 <?php
 foreach ($contents['vehicles'] as $vehicle) {
 print "<tr>";
 $identifier = urlencode($vehicle['NUMBERPLATE']);
 print "<td>

 {$vehicle['NUMBERPLATE']}</td>";
 print "<td>{$vehicle['PURCHASE_DATE']}</td>";
 print "<td>{$vehicle['MAINTENANCE_DATE']}</td>";
 print "</tr>";
 }
 ?>
 </table>
 <?php
}

function print_days($days_of_week) {
 for ($i = 1; $i <= 7; $i++) {
 print "<option ";
 if (array_search($i, $days_of_week) !== FALSE) {
 print "selected='selected'";
 }
 $day_name = get_name_of_day($i);
 print "value='{$i}'>{$day_name}</option>\n";
 }
}

Data presentation is defined in a
separate file using functions
get_contents and print_contents for
viewing data.

require("layout.php");

?>

 60

4.2 Vehicle details page (vehicle-details.php)
This page lists the properties of vehicles in a table. Property names appear on the left side while
the properties themselves appear on the right.

The first step is to import the
functions for database access and
executing queries.

<?php

require("../../php_include/services.php");
require("../../php_include/queries.php");

The function on the right returns the
numerical value of attribute name
obtained from the URL (that is,
passed by method GET). If there's no
such attribute it returns a predefined
default value.

function get_integer_value_of_parameter($name, $default =
FALSE) {
 if (array_key_exists($name, $_GET)) {
 $value = $_GET[$name];
 if (is_numeric($value)) {
 return (int) $value;
 }
 }
 return $default;
}

This function is similar to the
previous one. It returns the string
value of a parameter passed in the
URL.

function get_string_value_of_parameter($name, $default =
FALSE) {
 if (array_key_exists($name, $_GET)) {
 return $_GET[$name];
 } else {
 return $default;
 }
}

Similarly to the page listing all the
vehicles function get_contents
queries all the data needed from the
database. Function get_contents of
the listing page had a return value of
an associative array with key vehicles
storing an array (indexed by numbers)
of associative arrays containing
information on different vehicles. In
the present case however, the page
has to view the properties of a single
vehicle, thus our string keys directly
index the properties of that single
vehicle.

function get_contents() {
 $conn = db_connect();
 $numberplate =
get_string_value_of_parameter('numberplate');
 if ($numberplate !== FALSE) {
 $details = get_vehicle_details($conn, $numberplate);
 if (count($details) > 0) {
 $details = $details[0];
 } else {
 $details = FALSE;
 }
 } else {
 $details = FALSE;
 }
 db_disconnect($conn);
 $contents = array('details' => $details);
 return $contents;
}

In order to prevent users from
meaningless codes used in the
database these codes have to be
resolved and the corresponding
names have to be returned.

function get_type_string($type) {
 switch ($type) {
 case 'g': return 'gasoline tank';
 case 'c': return 'container chassis';
 case 'd': return 'dump';
 case 'v': return 'dry freight van';
 case 'l': return 'livestock trailer';
 case 'a': return 'auto carrier';
 default: return 'not specified';
 }
}

 61

Just like in the earlier cases output is
generated by a separate function
based on the data returned by
function get_contents.
As you might have noticed there's a
long series of HTML commands in
the function. Unlike the previous case
like this, in this function we use the
so-called heredoc syntax instead of
leaving PHP mode. In this syntax the
rules of substituting variables are the
same as in the case of using quote
marks but instead of a quote mark the
beginning of the string is indicated by
<<< followed by an arbitrary token.
The string lasts until PHP finds this
token again at the beginning of a line.
If the token is not at the beginning of
a line it becomes a part of the string
instead of terminating it. The token
can only be followed by an optional
semicolon terminating the command
(like in our example).

function print_contents($contents) {
 $vehicle = $contents['details'];
 if ($vehicle !== FALSE) {
 $type = get_type_string($vehicle['VEHICLE_TYPE']);
 $maintenance = $vehicle['MAINTENANCE_DATE'];
 $maintenance = $maintenance === NULL ?
 "< field not specified >" : $maintenance;
 print <<<TABLE
 <table>
 <tr>
 <td>Numberplate:</td>
 <td>{$vehicle['NUMBERPLATE']}</td>
 </tr>

 <tr>
 <td>Type of vehicle:</td>
 <td>{$type}</td>
 </tr>

 <tr>
 <td>Date of purchase:</td>
 <td>{$vehicle['PURCHASE_DATE']}</td>
 </tr>

 <tr>
 <td>Date of last maintenance check:</td>
 <td>{$maintenance}</td>
 </tr>
 </table>
TABLE;
 } else {
 print "<p>No such vehicle, invalid identifier.</p>";
 }
}

require("layout.php");

?>

4.3 Database access (services.php)
To make our application portable, the functions of database access are stored in a separate file.
Packed in each of these functions there's a database specific function. This packing approach
makes it possible to adjust the parameters of functions centrally, masking the differences of
different database manager versions and ensuring some kind of an independence from different
manufacturers: questions related to database access are all concentrated here.

An important question is that of character coding. In order to make our data readable on the
output, the coding of data queried from the database has to be the same as the coding of the
displayed page.10 The desired behavior can be achieved by an appropriate parameterization of the
database driver.

10 The file structure generated in the beginning of the workshop guarantees this.

 62

User name, password, and the coding
of result sets and the web page are
passed by constants. According to our
former issues of security it's
important not to store this file inside
the public_html directory.

<?php

define(DB_USER, 'levente_hunyadi');
define(DB_PASSWORD, 'password');
define(DB_CHARSET, 'utf8');
define(XHTML_CHARSET, 'utf-8');

Function db_connect connects the
database and returns a connection
identifier.

function db_connect() {
 $connection = oci_connect(DB_USER, DB_PASSWORD, "szglab",
DB_CHARSET);
 if ($connection === FALSE) {
 db_fatal_error();
 } else {
 return $connection;
 }
}

Function db_disconnect terminates
the connection corresponding to the
given connection identifier.

function db_disconnect($connection) {
 return oci_close($connection);
}

Function db_create_statement
creates a new SQL statement. Like in
the case of other languages learned in
this course instead of inserting
parameters directly into the SQL
query we use parameterized queries
with the values of parameters bound
to the statement later.

function db_create_statement($connection, $query) {
 $statement = oci_parse($connection, $query);
 if ($statement === FALSE) {
 print "<p>Illegal query:
{$query}</p>";
 db_fatal_error();
 } else {
 return $statement;
 }
}

Function db_destroy_statement
frees up the memory used by the SQL
query.

function db_destroy_statement($statement) {
 return oci_free_statement($statement);
}

Function db_execute executes an
SQL statement with no default
COMMIT.

function db_execute($statement) {
 return oci_execute($statement, OCI_DEFAULT);
}

Function db_bind binds a variable of
a parameterized SQL statement to a
value.

function db_bind($statement, $name, $value) {
 return oci_bind_by_name($statement, $name, $value);
}

Function db_fetch_resultset gets a
series of rows of the result set. Its
return value is an array with keys
corresponding to column names of
the result set. Parameters skip and
maxrows adjust the number of rows
to be omitted from the result set
(starting with the first row) and the
maximal number of rows to be
returned. They can be used for
turning listing pages.

function db_fetch_resultset($statement,$skip=0,$maxrows=-1) {
 $array = array();
 if (oci_execute($statement, OCI_DEFAULT)) {
 oci_fetch_all($statement, $array, $skip, $maxrows,
 OCI_FETCHSTATEMENT_BY_ROW + OCI_ASSOC);
 return $array;
 } else {
 return FALSE;
 }
}

 63

Function db_fatal_error stops
running the PHP script in case of a
critical database error and prints an
error message.

function db_fatal_error() {
 $error = oci_error();
 print htmlentities($error['message']);
 exit;
}

Function set_content_type sets the
content type (e.g. xhtml) and
character coding (e.g. utf-8) used
when generating the output. If content
type is xhtml+xml some of the
browsers are able to check whether
the page is well-formed (in xml
means), while other browsers rather
get confused.

function set_content_type() {
 $subpatters = array();
 if (preg_match('|Firefox/(\d+(?:[.]\d+)+)|ui',
 $_SERVER['HTTP_USER_AGENT'], $subpatterns)) {
 header('Content-type: application/xhtml+xml; charset=' .
 XHTML_CHARSET);
 } else {
 header('Content-type: text/html; charset=' .
 XHTML_CHARSET);
 }
}

Since an HTTP response consists of a
header and a payload, a call of the
function set_content_type has to be
the first printing command. It's
important that even space characters
on the top of the page source (before
<?php) are considered to be printing
commands. The restriction stands for
the PHP script referencing the page as
well, of course.

set_content_type();

?>

4.4 Queries (queries.php)

Function get_vehicles returns a list of
vehicles. Its return value is an array
containing records indexed by
numbers. Each one of these records
corresponds to a vehicle. Thus, the
keys of the associative array are
numbers referencing associative
arrays storing properties of vehicles
as pairs of field names and field
values. (The return value of
get_vehicles will be used as
parameter $vehicles of function
get_contents in vehicles.php.)
Unfortunately, in this case it's not
possible to use a fully parameterized
query, since the selected days of the
week make up a list with variable
length, and handling this kind of a list
is beyond the possibilities of
parameterized queries.

<?php

function get_vehicles($conn, $days_of_week = array()) {
 $values = array();
 foreach ($days_of_week as $day) {
 if ($day > 0 && $day <= 7) {
 $values[] = $day;
 }
 }
 if (count($values) > 0) {
 $value_list = implode(', ', $values);
 $condition =
 "TO_CHAR(date_of_purchase, 'd') IN ({$value_list})";
 } else {
 $condition = '1 = 1';
 }

 $statement = db_create_statement($conn, "
 SELECT numberplate,
 TO_CHAR(date_of_purchase, 'mm/dd/yyyy') AS
 purchase_date,
 TO_CHAR(last_checked, 'mm/dd/yyyy') AS
 maintenance_date
 FROM vehicles
 WHERE {$condition}");
 $resultset = db_fetch_resultset($statement);
 return $resultset;
}

 64

Function get_vehicle_details returns
the detailed properties of a vehicle in
an associative array. The registration
number is present in the output
(although it is used as the search key).
The main benefit of this solution is
that it helps us to generate the output,
since the value of the registration
number doesn't have to be retrieved
from the URL, as it is stored in the
associative array containing the result
set.

function get_vehicle_details($conn, $numberplate) {
 $statement = db_create_statement($conn, "
 SELECT numberplate, vehicle_type,
 TO_CHAR(date_of_purchase, 'mm/dd/yyyy') AS
 purchase_date,
 TO_CHAR(last_checked, 'mm/dd/yyyy') AS
 maintenance_date
 FROM vehicles
 WHERE numberplate = :numberplate");
 db_bind($statement, ':numberplate', $numberplate);
 return db_fetch_resultset($statement);
}

?>

4.5 Output (layout.php)
Finally, without any comments, we show the page layout.php for generating the output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=<?php print XHTML_CHARSET; ?>" />
<title>Lakemacher and Co. Shipping International</title>
<link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>

<!-- place of header -->
<p>Lakemacher & Co. Shipping International</p>
<hr />

<!-- place of body -->
<?php
 $data = get_contents();
 print_contents($data);
?>

<!-- place of footer -->
<hr />

</body>
</html>

