
 31

Workshop III: Java Database Connectivity (JDBC)

Author: Gergely Mátéfi

INTRODUCTION ...31

DATABASE MANAGEMENT IN A CLIENT-SERVER ARCHITECTURE................................32

THE JDBC 1.2 API..33
THE BASIC FRAMEWORK FOR DATA ACCESS..33
MANAGING DATABASE CONNECTIONS ..34
EXECUTING SQL STATEMENTS ...34
MANAGING RESULT TABLES ..36
ERROR HANDLING..37
TRANSACTION HANDLING..38
DATABASE INFORMATION..38

THE ORACLE JDBC DRIVERS..38

A DEMO APPLET ..39

GETTING READY ...42

REFERENCES...42

APPENDIX A: ACCESSING ORACLE DATA TYPES FROM JDBC...43

APPENDIX B: BRIEF JDBC HISTORY...43

Introduction
Java Database Connectivity (JDBS) is a manufacturer-independent de facto standard
of Java-based database access. The JDBC application programming interface (API)
contains Java classes and interfaces which provide low-level access to relational
databases, such as: connecting, executing SQL statements, processing results.
Interfaces are implemented by the own drivers of the manufacturers. According to the
Java principles – the drivers must only be available at runtime, thus application
developers are able to create the Java application independently from the database
management (DBMS) system.

The aim of the present workshop is to introduce database-related, client-server
application development in a Java and JDBC environment. In the first chapter the
client-server architecture will be described; which is followed by the enumeration of
the main JDBC language elements. Finally, the usage of JDBC will be illustrated
through a real-life example. According to the workshop environment the workshop is
limited to introducing the JDBC version 1.2 API only.

 32

Database management in a client-server architecture1
In client-server architecture the application running on the client connects to the
DBMS through a network, using the driver provided by the manufacturer. Depending
on the application the driver might be a C library, ODBC or JDBC.

Process Global Area

Buffer CacheSQL area

Parser

Optimizer
Tablespaces

Cursor_1

Cursor_n
Database driver

Application

Client Oracle DBMS

Net8

By authenticating himself towards the DBMS the client has to create a database-
connection (session) before starting to execute database operations. During the
session creation in the Oracle system the DBMS allocates resources for the session,
by reserving memory (Process Global Area – PGA) and by starting a server process2.

During the lifecycle of the session the client can initiate database operations which are
forwarded to the DBMS in the form of SQL statements. The SQL statement is
processed by the DBMS in several steps. At the processing start the server process
separates a memory area within the PGA to store processing information – such as the
compiled SQL statement, the actual position within the result set (see below). The
descriptor of the separated memory area is called cursor; the start of processing is
called opening a cursor. A session might have more than one opened cursor at a time.

The first step of processing is the parsing of the SQL statement, where the DBMS
compiles the string containing the statement and checks the valid access privileges to
the affected database objects. Then an execution plan is created by the Optimizer for
the successfully compiled statement. The execution plan contains the steps of
physically selecting the rows affected by the statement: it specifies the starting table,
the indexed to be used, how the selection is done. Since parsing and creating
execution plans requires a lot of resources, the execution plans of the latest SQL
statements are stored in the DBMS cache (SQL area).

1 The basic concepts will be introduced by using the (simplified) operation of Oracle RDBMS,
however these concepts are not Oracle-specific
2 Server processes can be shared, as well

 33

Usually a database-related application employs a few SQL statements with a specified
structure but different parameters. A billing software for example queries the same
data from different customers; therefore it is only the customer ID that changes from
statement to statement. Therefore SQL enables calling these statements by using
parameters:
SELECT NAME, ADDRESS, TAX_NR FROM CUSTOMER WHERE CUSTOMER_ID = ?

An SQL statement with parameters is compiled by the DMBS during processing it for
the first time, in latter cases there is no need to re-compile the statement. Cache usage
is enabled by the parameters being substituted only after parsing and execution plan
creation.

After the execution plan creation and the parameter substitution the SQL statement is
executed. In SELECT type queries the selected lines logically create a result table,
whose lines can be retrieved by the client one-by-one3, using the fetch operation. After
retrieving the result table, or finishing the transaction (commit / rollback) the memory
area allocated for the processing is freed, and the cursor is closed.

The JDBC 1.2 API

The basic framework for data access
The JDBC API is a set of Java classes and interfaces. The most important classes and
interfaces are:

• java.sql.DriverManager is a class responsible for URL resolution and creating new
database sessions;

• java.sql.Connection is an interface representing a database connection;
• java.sql.DatabaseMetaData provides (meta)information on the database;
• java.sql.Statement controls SQL statement execution;
• java.sql.ResultSet is an interface providing access to a given query results
• java.sql.ResultSetMetaData is an interface providing meta-information on the

result table

ResultSetMetaData

DatabaseMetaData

DriverManager

Connection Connection Connection

Statement StatementStatement

Resultset Resultset

3 In order to be more efficient the database driver might fetch more lines in a batch-processing fashion

 34

Managing database connections
The management of JDBC drivers and the creation – closing of connections is done
by the java.sql.DriverManager class. The attributes and methods of
DriverManager are static, thus there is no need to instantiate the class in the
application. A new connection is created in the DriverManager using the following
statement:
Connection con = DriverManager.getConnection(url,

"myLogin", "myPassword");

The first parameter of the getConnection method is the URL string that identifies the
database, the second and the third parameters are the name and the password of the
database user. The content of the URL is database-dependent, according to the
convention its structure is as follows:

jdbc:<subprotocol>:<subname>

where <subprotocol> identifies the mechanism used to connect to the database, and
<subname> contains the parameters related to the mechanism specified in the
<subprotocol> part. For example connecting to the ODBC data source identified by
„Fred” can be done by the following statements:
String url = "jdbc:odbc:Fred";
Connection con = DriverManager.getConnection(url, "Fernanda", "J8");

If the URL requested by the driver contains username and password already, the
second and the third parameters of the method might be omitted. By calling the
method getConnection DriverManager starts querying every single registered JDBC
drivers and creates the database connection using the first driver which is able to
resolve the URL. After carrying out the required operations the connection can be
closed using the Connection.close method of the DriverManager. Upon the deletion
of the Connection object (garbage collection) the method close is called
automatically.

Before use, all drivers must be loaded and registered at the DriverManager. Usually,
application developers only have to take care about loading the driver; the drivers
automatically register themselves in their static initialization method. The easiest way
to load a driver is to use the Class.forName method4, for example:
Class.forName("oracle.jdbc.driver.OracleDriver")

Due to security reasons and applet might only use drivers that are located on the local
computer, or have been downloaded from the same address as the applet code. Unlike
applets from „un-trusted sources”, „trusted” applets are run as complete programs by
JVM, without any constraints.

Executing SQL statements
Simple SQL statements are executed using Statement the interface. First the class
implementing the interface must be instantiated, then the relevant (SQL statement-
dependent) execution method of the instance must be called in order to execute an

4 In JDK 1.1.x due to a design error the static methods of a class loaded by the Class.forName method
sometimes cannot be run; in these cases the JDBC driver must be registered using the registerDriver
method of the DriverManager. The error usually occurs under Internet Explorer 4.x but not under
Netscape Navigator 4.x

 35

SQL statement. The Statement instance can be created by calling the
createStatement method of the Connection instance representing the database
connection:
Statement stmt = con.createStatement();

The execute series are the most often used of Statement's methods:

• executeQuery: executes the SQL query passed on as parameter, and returns a
result table (ResultSet). The method is used to execute query (SELECT)
statements.

• executeUpdate: executes the SQL statement passed on as parameter, and returns
the number of rows affected by the modification. This method can be used to
execute both data manipulation (DML) and data definition (DDL) statements. In
case of DDL statements the return value is 0.

• execute: executes the SQL statement passed on as parameter. This method is the
generalization of the previous two. The return value is True; in case the return
value is of type ResultSet it can be retrieved by the Statement.getResultSet
method. The number of rows affected by the modification can be retrieved by the
Statement.getUpdateCount method.

In the following example we are creating a table containing all the bill data for the
billing software of CoffeeBreak Company:
int n = stmt.executeUpdate("CREATE TABLE COFFEES (" +

"COF_NAME VARCHAR(32), " +
"SUP_ID NUMBER(8), " +
"PRICE NUMBER(6,2), " +
"SALES NUMBER(4), " +
"TOTAL NUMBER(6,2)");

Once the business is started, the purchases can be queried using the following
statement:
ResultSet rs = stmt.executeQuery("SELECT * FROM COFFEES");

The execution of a statement is finished when all result tables are processed (all lines
of the result tables are retrieved). However, statement execution can be terminated
manually by using the Statement.close method. By repeatedly calling the execution
method of a Statement object the earlier, unfinished execution of the same object is
automatically terminated.

Handling SQL statements with parameters somewhat differs from handling simple
SQL statements. In JDBC SQL statements with parameters are represented by the
PreparedStatement interface. The interface is created in a way similar to
Statement, by calling the prepareStatement method of the Connection instance
representing the connection and supplying the SQL statement with parameters:
PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");

The parameter values – indicated with question marks – of the statement stored in the
PreparedStatement can be set by using the setXXX method family. For the
execution the following methods (introduced earlier at the Statement class) might be
used without any arguments specified: executeQuery, executeUpdate and
execute. The following example illustrates data entry into the COFFEES table using
SQL statements with parameters:

 36

PreparedStatement updateSales;
String updateString =
 "update COFFEES set SALES = ? where COF_NAME like ?";
updateSales = con.prepareStatement(updateString);
int [] salesForWeek = {175, 150, 60, 155, 90};
String [] coffees = {"Colombian", "French_Roast", "Espresso",
 "Colombian_Decaf", "French_Roast_Decaf"};
int len = coffees.length;
for(int i = 0; i < len; i++) {

updateSales.setInt(1, salesForWeek[i]);
updateSales.setString(2, coffees[i]);
updateSales.executeUpdate();

}
The setXXX methods are expecting two arguments. The first argument is the index of
the SQL parameter to be set; the parameters in the SQL statements are indexed from
left to right, starting with 1. The second argument is the value to be set. Please note,
that JDBC does not perform implicit type conversion for the input parameters;
therefore it is the programmer’s responsibility to provide right data types for the
database-manager. Null values can be set by using the method
PreparedStatement.setNull. A set parameter can be reused for multiple executions
of the SQL statement.

Stored procedures and methods can be called by using the CallableStatement
interface. The CallableStatement interface can be instantiated by calling the
prepareCall method of the Connection instance representing the connection. The
CallableStatement interface is derived from the PreparedStatement interface thus
the input parameters (IN) can be set using the setXXX methods. Output parameters
(OUT) have to be registered by specifying their type before execution by using the
CallableStatement.registerOutParameter method. As it can be inferred from the
following example, after the execution output parameters can be retrieved using the
getXXX method family.
CallableStatement stmt = conn.prepareCall("call getTestData(?,?)");
stmt.registerOutParameter(1,java.sql.Types.TINYINT);
stmt.registerOutParameter(2,java.sql.Types.DECIMAL);
stmt.executeUpdate();
byte x = stmt.getByte(1);
BigDecimal n = stmt.getBigDecimal(2);

Similar to the setXXX methods getXXX methods do not perform any type conversions:
it is the responsibility of the programmer to ensure that the data types provided by the
database are in sync with the registerOutParameter and the getXXX methods.

Managing result tables
Query results can be accessed through the java.sql.ResultSet class which is
instantiated by the executeQuery or getResultSet method of the Statement
interfaces. It is only the actual row (marked by the cursor) of the result table
represented by ResultSet that can be accessed. Initially, the cursor is pointing before
the first row and the method ResultSet.next can be used to position the cursor on
the next row5. Method next returns False in case the cursor passed the last row,
otherwise it returns True.

5 Positioning the cursor on the previous row – or on a particular row – is only possible in JDBC 2.0 (in
case it is also supported by the driver)

 37

Field values of the actual row can be retrieved using the method family getXXX 6.
getXXX methods can reference fields in two ways: by column indexes and column
names. In SQL queries columns are indexed from left to right, starting with 1.
Referencing by column names is less efficient due to runtime mappings but is a more
comfortable solution. Unlike the getXXX methods of PreparedStatement and
CallableStatement, the ResultSet.getXXX methods perform automatic type
conversions. In case type conversion is not possible (for example by calling the
method getInt for a field of type VARCHAR containing the string “foo”) an
SQLException exception is raised. In case a field contains SQL NULL value getXXX
returns zero or Java null depending on the getXXX method. After retrieving the field
value method ResultSet.wasNull can be used to check whether the retrieved value
was derived from an SQL NULL or not7. Usually the programmer does not have to
deal with closing the result table since that is automatically closed when the
Statement is finished. However, the result table can be closed manually as well by
the ResultSet.close method.

Meta-information on the result tables can be accessed through the
ResultSetMetaData interface. The object implementing the interface is returned by
the method ResultSet.getMetaData. The ResultSetMetaData method
getColumnCount returns the number of columns, while getColumnName(int
column) returns the name of the column having the index specified.

The following example illustrates the use of ResultSet and ResultSetMetaData.
The first column is integer; the second is String, while the third is an array of
bytes.
Statement stmt = conn.CreateStatement();
ResultSet r = stmt.executeQuery("SELECT a, b, c FROM table1”);
ResultSetMetaData rsmd = r.getMetaData();
for (int j = 1; j <= rsmd.getColumnCount(); j++) {
 System.out.print(rsmd.getColumnName(j));
}
System.out.println;
while (r.next()) {
 // Printing fields of the actual row
 int i = r.getInt("a");
 String s = r.getString("b");

byte b[] = r.getBytes("c");
System.out.println(i + " " + s + " " + b[0]);

}
stmt.close();

Error handling
In case any kind of error occurs during the database connection, on Java-level an
SQLException is generated. Method SQLException.getMessage returns the error
message text, SQLException.getErrorCode returns the error code, and
SQLException.getSQLState returns the state description that complies with the
X/Open SQLstate convention.

6 For a list of getXXX methods please refer to the Appendices.
7 Null check before retrieving a field value is not supported by all DBMS therefore it was excluded
from JDBC 1.2 API.

 38

Transaction handling
Database connections represented by the class Connection are in auto-commit mode,
as a default. It means that every SQL statement (Statement) runs as a unique
transaction and is committed after its execution (commit). This default setting can be
overwritten using the method Connection.setAutoCommit(false). In this case the
transaction has to be committed or rolled back from the program using the method
Connection.commit and Connection.rollback, as it is illustrated in the following
example:
con.setAutoCommit(false);
PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");
updateSales.setInt(1, 50);
updateSales.setString(2, "Colombian");
updateSales.executeUpdate();
PreparedStatement updateTotal = con.prepareStatement(

"UPDATE COFFEES SET TOTAL = TOTAL + ? WHERE COF_NAME LIKE ?");
updateTotal.setInt(1, 50);
updateTotal.setString(2, "Colombian");
updateTotal.executeUpdate();
con.commit();
con.setAutoCommit(true);

Database information
Database-related information (metadata) can be accessed through the
DatabaseMetaData interface. The class implementing the interface is returned by the
getMetaData method of the Connection instance representing the connection.
DatabaseMetaData dbmd = conn.getMetaData();

Depending on the information requested the DatabaseMetaData interface methods
return with either a simple Java type or a ResultSet. The table below lists a few
important methods.
Method name Return value Description
getDatabaseProductName String Name of the database product
getDatabaseProductVersion String Database product version number
getTables(String catalog,
String schemaPattern,
String tableNamePattern,
String types[])

ResultSet Lists the tables matching the provided
patterns

The Oracle JDBC drivers
The two client-side drivers implemented by Oracle are: the JDBC OCI Driver and the
JDBC Thin Driver.

The JDBC OCI Driver implements the JDBC methods as OCI library calls. The
Oracle Call Interface (OCI) consists of a set of standard C-language software APIs
(database drivers) which provide a low-level interface to the DBMS services for high-
level development tools. By calling a method in JDBC (e.g. statement execution) the
JDBC OCI Driver is forwarding the call to the OCI layer, which is then transmitted to
the database manager via SQL*Net or Net8 protocols. Due to the C library calls the
JDBC OCI Driver is platform- and operating system dependent; however its native
coding makes it more efficient than the purely Java-based Thin Driver.

 39

The JDBC Thin Driver is entirely written in Java. The Thin Driver contains a
simplified, TCP/IP-based implementation of SQL*Net/Net8 protocol, therefore herein
a JDBC method call is immediately transmitted to the database manager. Due to the
pure Java implementation the JDBC Thin Driver is platform-independent and can be
downloaded together with the Java applet. However, since the implementation is
simplified the JDBC Thin Driver does not provide all OCI features (e.g. encrypted
communication, non-IP protocols etc. are not supported).

For addressing the databases – matching the JDBC convention – Oracle uses the
following URL structure:

jdbc:oracle:drivertype:user/password@host:port:sid

where drivertype can be oci7, oci8 or thin; host is the DNS name of the database-
server; port is the port number of the server-side TNS listener; and sid is the
database identifier. Username and password can also be provided in the second and
third parameters of the getConnection method, and in this case the user/password
part can be excluded from the URL structure.

A demo Applet
The applet included below provides access to a simple library system. The driver
name and the database URL are imported as parameters from the embedding HTML
page; database connection is created by clicking on the Connect button. By pressing
the Search button book titles starting with the string specified in the titleField are
listed in the result area. The constructor located at the beginning of the source creates
a GUI and assigns event handlers to the buttons; Print methods are used to print
different objects (String, SQLException, and ResultSet); while the actionPerformed
method handles the on-button-click events and destroy terminates the possibly open
connection when the applet is closed.
import java.awt.*;
import java.awt.event.*;
import java.sql.*;
import java.applet.Applet;

public class Library extends Applet implements ActionListener{
 Button connectButton = new Button("Connect");
 Button clearButton = new Button("Clear");
 TextField titleField = new TextField(30);
 Button listButton = new Button("Search");
 TextArea result = new TextArea(20,100);
 Connection con = null;

 public Library() {
 super();
 Panel listPanel = new Panel();
 listPanel.add(new Label("Title: "));
 listPanel.add(titleField);
 listPanel.add(listButton);
 add("North",listPanel);
 Panel resultPanel=new Panel(new BorderLayout());
 resultPanel.add("North", new Label("Output:"));
 result.setEditable(false);
 result.setFont(new Font("Monospaced", Font.PLAIN, 10));
 resultPanel.add("South", result);
 add("Center", resultPanel);
 Panel controlPanel = new Panel();

 40

 controlPanel.add(connectButton);
 controlPanel.add(clearButton);
 add("South",controlPanel);

 connectButton.addActionListener(this);
 clearButton.addActionListener(this);
 listButton.addActionListener(this);
 validate();
 }

 public static void main (String args[]) {
 Library myLibrary = new Library();
 Frame frame = new Frame(myLibrary.getClass().getName());
 frame.add("Center",myLibrary);
 frame.setSize(500,700);
 frame.show();
 }

 private void Print(String text) {
 result.append(text+"\n");
 }

 private void Print(SQLException e) {
 while (e!=null) {
 Print("SQLException occured:" +
 (e instanceof SQLWarning ? "WARNING" : "ERROR"));
 Print("SQLState: "+e.getSQLState());
 Print("Message: "+e.getMessage());
 Print("Code: " + e.getErrorCode());
 e=e instanceof SQLWarning ? ((SQLWarning)e).getNextWarning()
 : e.getNextException();
 }
 }

 private void Print(ResultSet rset) throws SQLException {
 ResultSetMetaData rsmd = rset.getMetaData();
 String s = "";
 int i, colNum = rsmd.getColumnCount();
 for (i=1; i<=colNum; i++)
 s += rsmd.getColumnLabel(i) + "\t\t";
 Print(s);
 while (rset.next()) {
 s = "";
 for (i=1;i<=colNum; i++)
 s += rset.getString(i) + "\t\t";
 Print(s);
 }
 }

 public void actionPerformed(ActionEvent evt)
 {
 if (evt.getSource()==connectButton) {
 if (con!=null) {
 Print("Already connected.");
 return;
 }
 try {
 String driverName = getParameter("driverName");
 try {
 Class.forName(driverName);
 Print(driverName + " loaded.");

 41

 }
 catch (ClassNotFoundException e) {
 Print(driverName + " not found. ");
 return;
 }
 if (java.lang.System.getProperty("java.vendor").equals(
 "Netscape Communications Corporation")) {
 netscape.security.PrivilegeManager.enablePrivilege(
 "UniversalConnect");
 }
 else if (java.lang.System.getProperty("java.vendor").equals(
 "Microsoft Corp.")) {
 DriverManager.registerDriver(
 new oracle.jdbc.driver.OracleDriver());
 }

 String url =getParameter("url");
 Print("Connecting to " + url);
 con=DriverManager.getConnection(url);
 DatabaseMetaData dbmd = con.getMetaData();
 Print("DBMS name: " + dbmd.getDatabaseProductName() +
 " version "+ dbmd.getDatabaseProductVersion());
 }
 catch (SQLException e) { Print(e); }
 }

 else if (evt.getSource()==listButton) {
 if (con == null) {
 Print("Not connected.");
 return;
 }
 try {
 Statement stmt = con.createStatement();
 ResultSet rset = stmt.executeQuery(
 "SELECT isbn, author, title " +
 "FROM book " +
 "WHERE title LIKE '"+ titleField.getText() + "%'" +
 "ORDER BY title, author");
 Print(rset);
 stmt.close();
 }
 catch (SQLException e) { Print(e); }
 }

 else if (evt.getSource() == clearButton) {
 result.setText("");
 }
 }

 public void destroy() {
 try {
 con.close();
 }
 catch (SQLException e) {}
 }
}

The HTML file embedding the applet:
<html><body>
<applet code="Library.class" archive=classes111.zip width="500" height="300">
<param name=driverName value="oracle.jdbc.driver.OracleDriver">

 42

<param name=url value="jdbc:oracle:thin:scott/tiger@rapid.eik.bme.hu:1521:szglab">
Sorry, your browser can't display Java applets.
</applet></body></html>

Please note that certain security measures must be taken into consideration when
running an applet. By default, an applet without a certificate can only connect to the
server from which it has been downloaded. During the applet development phase
however, depending on the run-time environment, this security setting of the JVM can
be turned off8.

In the workshop environment under Netscape Communicator 4.77 browser the applet
might ask the user to disable network connection limitations using the following
method: PrivilegeManager.enablePrivilege("UniversalConnect").

Getting ready
Apart from universal programming skills JDBC specific knowledge and SQL query
experience is also required for successfully completing the workshop exercises. Due
to the large number of possible error conditions the workshop requires thorough
preparation. Preparation materials and configuration files are available under the
following address: http://db.bme.hu/java/jdbc. It is suggested that you follow these
steps!

0. Take a look at the Java recap, if necessary. Read through the JDBC help.
(JDBC knowledge will be assessed during a short test before the workshop.)

1. Create the required environment on the web server. Check the JDK version
number (java –version). Create a ~/public_html library (if necessary) and
copy the JDBC Thin Driver matching the operating system and the DBMS.

2. Copy the demo applet, the embedding HTML file and the build.sh script to
facilitate the compilation. Compile the applet. Set the necessary read
privileges for the web server.

3. Enable universal network connection for applets in your browser. Test the
demo applet (possible exceptions are displayed in the Java Console of the
browser, debugging can also be performed from here).

4. Modify the demo applet in a way that one can search for author names and
ISBN, as well.

References
The JDBC API Version 1.20, Sun Microsystems Inc., 1997 (available at http://www.javasoft.com)
S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner: JDBC 2.0 API Tutorial and Reference,
Second Edition: Universal Data Access for the Java 2 Platform, 1999 (available at
http://www.javasoft.com)
S. Kahn: Accessing Oracle from Java, Oracle Co., 1997. (available at http://www.oracle.com)
Oracle8™ Server Concepts, Release 8, Oracle Co.
Nyékiné et al. (szerk): Java 1.1 útikalauz programozóknak, ELTE TTK Hallgatói Alapítvány, 1997.

8 Under Internet Explorer 4.x it can be enabled under security settings, under Netscape Communicator
4.x add the following row user_pref("signed.applets.codebase_principal_support", true); to
the <Netscape dir>\Users\<Username>\prefs.js file.

 43

Appendix A: Accessing Oracle data types from JDBC
Java type Access method

C
H

A
R

V
A

R
C

H
A

R
2

N
U

M
B

ER

D
A

TE

byte getByte x x x

short getShort x x x

int getInt x x x

long getLong x x x

float getFloat x x x

double getDouble x x x

java.Math.BigDecimal getBigDecimal x x x

boolean getBoolean x x x

String getString X X x x

java.sql.Date getDate x

java.sql.Time getTime x

java.sql.TimeStamp getTimeStamp X

Signage:
x: the getXXX method can be used to access that particular SQL type
X: the getXXX method is recommended to access that particular SQL type

Appendix B: Brief JDBC history
JDBC has been changing a lot during its history. Originally, at the beginning of 1997
JDBC 1.0 API was introduced as a simple, manufacturer-independent, unified – and
therefore featuring minimal functionality – programming interface supplementing
Java Development Kit (JDK) 1.0. In the latter JDK 1.1 JDBC was already thoroughly
integrated, with its classes being part of the Java base classes (java.sql.*). The
JDBC 2.0 which was presented with JDK 1.2 contains two packages. The java.sql
package containing the JDBC 2.0 Core API enhances the original JDBC API with
new functionality. New functionalities include: positionable result tables, result table
modification support with direct JDBC methods, handling of SQL99 specification
standard basic (BLOB, CLOB, Array) and user-defined (User Defined Type, UDT)
data types. Apart from the DriverManager architecture aiming to directly handle the
drivers the JDBC 2.0 Optional Package9 (javax.sql) introduces the data source-
based (DataSource) access model, which provides connection pooling and distributed
transaction handling. As of now,10 the JDBC 3.0 API is fine-tuning the earlier
modifications and integrates JDBC more closely with other Java 2 technologies (such
as Connector Architecture etc.).

9 Under its former name: JDBC Standard Extension API
10 In January, 2002.

